## Example

## Use the CALC function to solve graph equations <br> (The coordinate axis is rectangular coordinates.)

Before carrying out the following operation, press the reset switch located on the back of the unit and press

| CL | ENTER |
| :---: | :---: |
| keys (caution: previously entered equations and memory will be erased). |  |

## Key Operation

1 | $Y=$ | 0 | $\cdot$ | 5 |
| :--- | :--- | :--- | :--- |
| $\mathrm{X} / \mathrm{T}$ |  |  |  |
| $\boldsymbol{x}^{2}$ | - | 5 | ENTER |



3 GRAPH


6 2nd F CALC 2

7 2ndF CALC 2


Display


## Notes

Enter the graph equation " $0.5 \mathrm{X}^{2}-5$ " at Y 1 .

Enter the graph equation
" $4 \sqrt{\mathrm{X}+7-10}$ " at Y 2 .

Display the graph.

Specify the value of $X$ to find the value of $Y$, by specifying the value of CALC.

Enter " 3 " as the value of X and the value of Y is calculated.
$\left[\begin{array}{l}\text { The values } X \text { and } Y \text { appear at the bottom of the } \\ \text { screen and the cursor appears at the } \\ \text { corresponding point on the graph. }\end{array}\right]$

Specify "Intsct" function to calculate the intersection point of the two graphs.
$\left[\begin{array}{l}\text { After completion of the calculation, the values of } \\ \text { the X,Y intersection will appear at the bottom of } \\ \text { the screen, and the cursor will appear at the } \\ \text { corresponding point on the graph, as before. }\end{array}\right]$

The graph is intersected at two points. Carry out the same operation as in $\mathbf{6}$ to find the second intersection.

- After completion of the calculation, the values of the $X, Y$ intersection will appear at the bottom of the screen, and the cursor will appear at the corresponding point on the graph, as before.

