Sharp EL-9900 Graphing Calculator

Basic Keyboard Activities

General Mathematics
Algebra
Programming

Advanced Keyboard Activities

Algebra
Calculus
Statistics
Trigonometry
Programming

Sharp EL-9900
 Graphing Calculator Basic Keypad

BASIC ARITHMETIC

Press 国国 to access the calculation screen.

1. Add 9 to 27 twice.

STEP 1: Enter 27 by pressing 27 .
STEP 2: Add by pressing the $\quad+$ key.
STEP 3: Enter 9 by pressing 9 .
STEP 4: Find the first sum by pressing the ENTER key.
STEP 5: Add 9 again by pressing +9 ENTER.

$27+9$	36
$A n=+9$	4.

2. Multiply $\frac{3}{4}$ to $\frac{5}{2}$. Then, convert to a decimal.

STEP 1: Enter $\frac{3}{4}$ by pressing 3 a/b 4 .
STEP 2: Multiply by pressing the x key.
STEP 3: Enter $\frac{5}{2}$ by pressing 5 a/b 2 a \square
STEP 4: Find the product by pressing ENTER.
STEP 5: \quad Convert to an improper fraction by pressing $\rightarrow \mathrm{b} / \mathrm{c}$ ENTER.
STEP 6: Convert to a mixed number by pressing $\rightarrow \mathrm{a}$ b/c ENTER.

$\frac{3}{4} \times \frac{5}{2}$	1.875
Ans $6 \mathrm{~b} / \mathrm{c}$	$\frac{15}{8}$

PARENTHESES AND EDITING

A trapezoid is a four-sided figure where two of the sides are parallel and the other two sides are not parallel.

The area of a trapezoid is defined to be Area $=\left(\frac{h}{2}\right) \bullet\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right)$ where h is the height or distance between the parallel sides b_{1} and b_{2}.

1. Calculate $\left(\frac{5}{2}\right) \times(3+4)$.

STEP 1: $\quad \operatorname{Enter}\left(\frac{5}{2}\right)$ by pressing $(\square \boxed{5} \boxed{\mathrm{a} / \mathrm{b}} \boxed{2} \square)$.
STEP 2: Multiply by pressing the x key.
STEP 3: Enter $(3+4)$ by pressing $\because(3) \square 4 \square)$.
STEP 4: Calculate by pressing the ENTER key.
The answer is 17.5

2. Edit the previous calculation to find $\left(\frac{5}{2}\right) \bullet(7+4)$.

STEP 1: Edit the previous calculation by pressing 2ndF ENTRY
$\measuredangle \measuredangle$ to move the blinking cursor to highlight the 3 .
STEP 2: Delete the 3 by pressing DEL to backspace delete.
STEP 3: Insert the 7 by pressing 7 .
STEP 4: Calculate by pressing the ENTER key.
The answer is 27.5 .

PERCENTS

Press $\underset{\boxed{\text { 国 }} \text { 国 }}{ }$ to access the calculation screen.

Mixtures contain two or more components. Percents are often used to express the amount of a component in a mixture.

1. Find 30% of 400.

STEP 1: Enter 400 by pressing $4 \boxed{0} \boxed{0}$.
STEP 2: Multiply by pressing the $\triangle \times$ key.
STEP 3: Enter 30% by pressing 3 , 0 2ndF \% ENTER. The answer is 120.

2. Find what percent of $\mathbf{5 0 0}$ is $\mathbf{1 5 0}$.

STEP 1: Enter 150 by pressing 1 5 0 .
STEP 2: Divide by pressing the \div key.
STEP 3: Enter 500 by pressing 5 0 0 .
STEP 4: Calculate by percentage by pressing $2 \mathrm{ndF} \%$ ENTER.
The answer is 30%.

PERCENTS (continued)

3. Add 20% to 300.

STEP 1: Enter 300 by pressing 3000.
STEP 2: Add by pressing the $+\square$ key.
STEP 3: Enter 20\% by pressing $20.0 \times 2 \mathrm{ndF} \%$
3000 ENTER.
The answer is 360 .

4. Subtract 40% from 200 .

STEP 1: Enter 200 by pressing 2000.
STEP 2: Subtract by pressing the $\square-\square$ key.
STEP 3: Enter 40\% by pressing 4 . $0 \times 2 \mathrm{ndF} \times$

2	0	0
ENTER.		

The answer is 120 .

MEMORY USAGE

Press 胃国 to access the calculation screen.

1. Calculate $2 \cdot 3$ and store the value in A. Recall the A to see the product stored in A .

STEP 1: Multiply 2 and 3 by pressing $2 \times x$ ENTER. The product is 6 .
STEP 2: Store 6 into A by pressing STO ALPHA A ENTER.
STEP 3: Clear the screen by pressing CL.
STEP 4: Recall A by pressing ALPHA A ENTER.
2. Calculate 3 - 5 and store the value in M. Calculate 4 • 5 and add this product to M. Then, recall the M to see the sum of the products.

STEP 1: Multiply 3 and 5 by pressing $3 \boxed{x} 5$ ENTER.
The product is 15 .
STEP 2: Store 15 into M by pressing STO ALPHA M ENTER.
STEP 3: Multiply 4 and 5 by pressing $4 \times x \times 5$ ENTER.
The product is 20 .
STEP 4: Add 20 to M by pressing $\mathrm{t}_{\mathrm{+}}$ ALPHA M .
The sum of the products is 35 .

3. Recall the previous answer.

STEP 1: With the display screen cleared, recall the previous answer by pressing 2 ndF ANS ENTER.

POWERS AND R00TS

1. Calculate $\mathbf{1 5}^{2}$.

STEP 1: Enter 15 by pressing 1 .
STEP 2: \quad Square by pressing the x^{2} key.
STEP 3: Calculate by pressing the ENTER key.
The answer is 225 .

2. Calculate 3^{4}.

STEP 1: Enter 3 by pressing 3 .
STEP 2: Exponentiate by pressing the a^{b} key.
STEP 3: Enter 4 by pressing 4 .
STEP 4: Calculate by pressing the ENTER key.
The answer is 81.

3. Calculate $\sqrt{196}$.

STEP 1: Enter the square root by pressing $2 \mathrm{ndF} \sqrt{ }$.
STEP 2: Enter 196 by pressing 1 9 .
STEP 3: Calculate by pressing the ENTER key.
The answer is 14.

LOGARITHMS AND EXPONENTIALS

Press \square to access the calculation screen.

1. Find $\log 3$.

STEP 1: Enter log by pressing MATH A 4 .
STEP 2: Enter 3 by pressing the 3 key.
STEP 3: Calculate by pressing the ENTER key.
The answer is 0.4771 .

2. Find $10^{(3 * 4)}$.

STEP 1: Enter 10 by pressing MATH A 5 .
STEP 2: \quad Enter $(3 \div 4)$ by pressing 3 ㄴ 4 .
STEP 3: Calculate by pressing the ENTER key.
The answer is 5.6234 .

TRIGONOMETRIC FUNCTIONS

The definitions of the trigonometric functions with regard to the right triangle can be used to find distances between points. The sine function is defined to be opposite side/hypotenuse, the cosine function is adjacent side/hypotenuse, and the tangent function is opposite side/adjacent side.

Put the calclator in degree mode by pressing 2 ndF $\operatorname{SETUP} \mathrm{B}=1$.

1. Find $\sin 30^{\circ}$.

STEP 1: Press 㚻国 to access the calculation screen.
STEP 2: Enter sin 30 by pressing MATH A 1 A 0 .
STEP 3: Calculate by pressing the ENTER key.
The answer is 0.5 .

2. Find $3 \cos 20^{\circ}$.

STEP 2: Calculate by pressing the ENTER key.
The answer is 2.819

3. Find $\tan 50^{\circ}$.

STEP 1: Enter tan 50 by pressing MATH A 5 A 50 .
STEP 2: Calculate by pressing the ENTER key.
The answer is 1.19 .

Remember that cotangent $=1 /$ tangent, secant $=1 /$ cosine, and cosecant $=1 /$ sine .

TRIGONOMETRIC FUNCTIONS (continued)

Put the calclator in radian mode by pressing 2ndF SETUP B 2 .

1. Find $\sin 2.1$.

STEP 1: Press 盿国 to access the calculation screen.

STEP 3: Calculate by pressing the ENTER key.
The answer is .8632

2. Find $\cos (-1.7)$.

STEP 1: \quad Enter $3 \cos (-1.7)$ by pressing 3 MATH A $2=(-)$ $\square 7$.
STEP 2: Calculate by pressing the ENTER key.
The answer is -.3865

3. Find tan 0 .

STEP 1: Enter tan 0 by pressing MATH A 3 .
STEP 2: Calculate by pressing the ENTER key.
The answer is zero.

ANGLE CONVERSIONS

Angles can be expressed in degrees and radians．Degrees can be expressed in either decimal degrees or degrees－minutes－seconds．The sum of the angles of a triangle is 180° or π radians．

1．Convert 30° to radians．

Put the calclator in radian mode by pressing 2 ndF SETUP B 2 田国．

STEP 1：Enter 30° by pressing 3 何 MATH E 1 ．
STEP 2：Convert to radians by pressing ENTER ．
The answer is 0.5236 ．

2．Convert $50^{\circ} 35$＇to decimal degrees．

STEP 1：Enter $50^{\circ} 35^{\prime}$ by pressing 50.0 MATH E E 10355

$$
\begin{array}{|l|l|l|}
\hline \text { MATH } & \text { E } & 2 \\
\hline
\end{array}
$$

STEP 2：Calculate decimal degrees by pressing ENTER ． The answer is 50.5833 ．
$\left[\begin{array}{ll}56 \times 35 \\ & \\ & \\ & \\ \end{array}\right.$

ANGLE CONVERSIONS (coninueed)

3. Convert 40.235° to degrees-minutes-seconds.

STEP 1: Enter 40.235° by pressing	4	0	\bullet	2	3	5
.						

STEP 2: Calculate degrees-minutes-seconds by pressing
MATH D 2 ENTER
The answer is $40^{\circ} 14^{\prime} 06^{\prime \prime}$.

$46.235+\mathrm{dmE}$

4. Convert 1.25 radians to degrees.

Put the calclator in degree mode by pressing 2 ndF SETUP B B 㚻国.
 E 4 .
STEP 2: Convert to degrees by pressing ENTER. The answer is 71.6°.

PROBABILITY

Press \square to access the calculation screen.

1. Find five factorial or 5 !.

STEP 1: Enter 5! by pressing 5 MATH C .
STEP 2: Calculate by pressing ENTER .
The answer is 120 .

2. Find the number of combinations of 2 from a group of 5.

STEP 1: Enter the large number 5 by pressing 5 .
STEP 2: Enter the combination symbol by pressing MATH C 6
STEP 3: Enter the small number 2 and calculate by pressing
2 ENTER.
The answer is 10 .
Permutations are found in the same manner.

3. Randomly select a person from an ordered group of $\mathbf{1 0}$.

STEP 1: Access the random integer command by pressing MATH C 2 .
STEP 2: Enter the lower bound of 1 by pressing $1 \square$,

STEP 4: Calculate the random person by pressing ENTER.
Answers will vary.

ONE-VARIABLE STATISTICS

1. Calculate statistics for a one-variable data set.

STEP 1: Turn the calculator on and press STAT to enter the statistics menu. Press A (EDIT) ENTER to view the statistics data entry screen. If there is a data set present within the lists on your calculator, use the arrow keys to move to the list, if necessary, and press $\boldsymbol{\Delta}$ to highlight the list label. Press DEL ENTER to delete the old data. Repeat for other lists of data.

STEP 2: Move the highlighter to the cell directly below the L1 in the table. Enter the following data set:

25	32	28	33	31	27	40	38	29	30

STEP 3: Check the data you have entered and correct any errors you may find. Press 2ndF QUIT to exit the data entry screen. To calculate the numerical descriptions of the data set, press STAT C (CALC) and 1 (1_Stats). Press ENTER and the statistical results will appear.

2. The statistics displayed are:

1. the average or mean value of the data set, \bar{x};
2. the standard deviation assuming the data set is a sample from a population, $s x$;
3. the standard deviation assuming the data set represents the entire population, σx;
4. the sum of the data values, $\sum x$;
5. the sum of the squared data values, $\sum x^{2}$;

Press $\boldsymbol{\nabla}$ five times to see more of the statistics.
6. the number of values in the data set, n;
7. the minimum value in the data set, $x \mathrm{~min}$;
8. the first quartile (25th percentile), Q1;
9. the median (50th percentile), Med;
10. the third quartile (75th percentile), Q3; and Press ∇ one more time to see the final statistic.
11. the maximum value in the data set, x max.

HISTOGRAM FOR A
 ONE-VARIABLE DATA SET

Steps for creating a data set's histogram

STEP 1: Turn the calculator on, press STAT A (EDIT) ENTER to view the statistics data entry screen. Delete old data sets.

STEP 2: Move the highlighter to the cell directly below the L1 in the table and enter the following data set:
$\begin{array}{llllllllll}15 & 28 & 17 & 36 & 38 & 19 & 13 & 25 & 27 & 41\end{array}$

STEP 3: Check the data you have entered by pressing $\boldsymbol{\Delta}$ to move back through the data.

STEP 4: To graph a histogram that represents the data set, you must first press STAT PLOT A (PLOT1) and press ENTER. A PLOT1 setup screen will appear. Turn the plot on by pressing ENTER. Select one-variable data by pressing \boldsymbol{Z} ENTER. Set the list to L1 by pressing ∇ 2ndF L1 ENTER. A blank Freq: prompt indicates the data is non-weighted and the frequencies are one. Choose the histogram graph by pressing ∇ STAT PLOT A (HIST) and 1 (Hist).

STEP 5: Set the calculator to rectangular graphing by pressing 2ndF SET UP
E (COORD) 1 (Rect) and press 2ndF QUIT.

STEP 6: Set the viewing window by pressing WINDOW. Set the horizontal axis to $10<x<50$ with Xscl $=10$ by pressing 10 ENTER 500 ENTER 1 0 ENTER. Set the vertical axis to $0<y<5$ with Yscl $=1$ by pressing 0 ENTER 5 ENTER 1 ENTER.

View the histogram by pressing GRAPH.

BOX-AND-WHISKER CHART FOR A ONE-VARIABLE DATA SET

Steps for creating a data set's box-and-whisker chart

STEP 1: Press STAT to enter the statistics menu. Delete old data and enter the following data set in L1:
$\begin{array}{llllllllll}1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 4 & 4\end{array}$

STEP 2: To construct a box-and-whisker chart, first press STAT PLOT A
ENTER. Press ENTER to turn PLOT1 on. Press $\boldsymbol{\nabla}$ ENTER to choose one-variable data. Press $\boldsymbol{\nabla}$ 2ndF L1 ENTER to enter L1 as the data list. Leave the Freq prompt blank. Set the graph to a box-and-whisker chart by pressing $\boldsymbol{\nabla}$ STAT PLOT E (BOX) 1 Box.

STEP 3: In the example, the data is discrete with a smallest value of 1 and a largest value of 4 . Set the viewing window to $0<x<5$ with $\mathrm{Xscl}=1$. Next, set the vertical axis to $0<y<1$ with $\mathrm{Yscl}=1$.

STEP 4: To view the box-and-whisker chart for the data, press GRAPH.

STEP 5: Press TRACE followed by Δ and to view the five values making up the box-and whisker chart.

STEP 6: Turn PLOT1 off by pressing STAT PLOT ENTER \square ENTER 2ndF QUIT.

PIE CHART FOR A ONE-VARIABLE DATA SET

Steps for creating a pie chart from count data

STEP 1: Press STAT to enter the statistics menu. Delete old data and enter the following data set in L1 using weights in L2:

24	18	40	10

STEP 2: To construct a pie chart, first press STAT PLOT ENTER . Press ENTER to turn PLOT1 on. Press ∇ ENTER to choose one-variable data. Press 2ndF L1 ENTER to enter L1 as the data list. Leave the Freq prompt blank. Set the graph to a pie chart by pressing ∇ STAT PLOT F (PIE) 1 (PIE) .

STEP 3: To view the pie chart for the data, press GRAPH.

STEP 4: Press TRACE followed by \downarrow and to highlight and mark the pieces of the pie chart.

STEP 5: Turn PLOT1 off by pressing STAT PLOT ENTER \square ENTER
2ndF QUIT.

STATISTICS FOR A TWO-VARIABLE DATA SET

Steps for calculating statistics for a two-variable data set

STEP 1: Turn the calculator on and press STAT to enter the statistics menu. Press A (EDIT) ENTER to access the data entry screen. Delete old data by highlighting L1 and pressing DEL ENTER. Repeat for other lists.

STEP 2: Enter the following data set:

X	Y
25	32
28	33
31	27
40	38
29	30

STEP 3: Check the data you have entered and correct any errors you may find.
To calculate the numerical descriptions of the two variables, press 2 ndF QUIT STAT C (CALC) 2 2_Stats. Press ENTER and the statistical results will appear.

STEP 4: Press \square to view the remaining statistics.

The statistics displayed are:

1. the average or mean value of the variable, \bar{x} or \bar{y};
2. the standard deviation assuming the data points are a sample from a population, $s x$ or $s y$;
3. the standard deviation assuming the data points represents the entire population, σx or σy;
4. the sum of the values, $\Sigma \mathrm{x}$ or $\sum \mathrm{y}$;
5. the sum of the squared values, $\sum \mathrm{x}^{2}$ or $\sum \mathrm{y}^{2}$;
6. the number of data points, n;
7. the minimum variable value, xmin or ymin;
8. the maximum variable value, xmax or ymax; and
9. the sum of the x and y products, \sum xy.

SCATTER DIAGRAM FOR A TWO-VARIABLE DATA SET

Steps for drawing a scatter diagram for a two-variable data set

STEP 1: Consider the following table listing the revenue for a large corporation:

Year	Revenue (in millions of dollars)
1	48.63
2	48.86
3	48.91
4	49.69
5	51.10
6	52.00
7	52.03

STEP 2: Access the statistics data entry screen and delete old data.

STEP 3: Enter the data using L1 for the year and L2 for the revenue (in millions of dollars). Check the data and correct any errors you may find.

STEP 4: Press STAT PLOT A (PLOT1) ENTER to access the PLOT1 set up screen. To turn PLOT 1 on, press ENTER. Press $\boldsymbol{\nabla}$ ENTER to set the data to two-variable. Set L1 for the x variable by pressing ∇ 2ndF LIST A 1 ENTER. Press 2ndF LIST 2 ENTER to set L2 for the y variable. To set the graph to scatter diagram, press STAT PLOT G (S.D.) and 3 (Scattr \square).

STEP 5: Construct an autoscaled scatter diagram of this data set by pressing ZOOM A (ZOOM) 9 (Stat).

Press TRACE and press \square repeatedly to verify that $\mathrm{Xmin}=1, \mathrm{Xmax}=7$, $Y \min =48.63$, and $Y \max =52.03$.

LINEAR REGRESSIONS

Steps for calculating the best-fitting line

STEP 1: Turn the calculator on and press STAT to enter the statistics menu.
Access the data entry screen by pressing A (EDIT) ENTER .
Delete old data and enter the following data set:
$\mathrm{X} \quad \mathrm{Y}$
$25 \quad 32$
2833
$31 \quad 27$
$40 \quad 38$
2930
Check the data you have entered and correct any errors you may find.

STEP 2: To find the best-fitting line (regression line) for the data, press 国固 STAT D (REG) 02 (Rg_ax+b) and press ENTER.

STEP 3: To overlay the regression line and the scatter diagram for the data, you must first set up the scatter diagram by pressing STAT PLOT A (PLOT1) ENTER ENTER $\nabla>$ ENTER ∇ 2ndF LIST A 1 ENTER 2ndF LIST 2 ENTER STAT PLOT G (S.D.) and 3 (Scattr \square).

STEP 4: Display the scatter diagram for the data by pressing WINDOW and setting $\mathrm{Xmin}=20, \mathrm{Xmax}=45, \mathrm{Xscl}=5, \mathrm{Ymin}=25, \mathrm{Ymax}=40$, and $\mathrm{Yscl}=5$. Press GRAPH to view the scatter diagram.

STEP 5: To view the overlay of the regression line and the scatter diagram, press $\mathrm{Y}=\mathrm{CL}$ 2ndF VARS H (STAT) ENTER B (REGEQN) 1 (RegEqn) GRAPH.

19

