Sharp EL-9900 Graphing Calculator

Basic Keyboard Activities

General Mathematics Algebra Programming

Advanced Keyboard Activities

Algebra

Calculus

Statistics

Trigonometry

Programming

Sharp EL-9900 Graphing Calculator Basic Keypad

CREATING A NEW PROGRAM

- 1. The Basic keyboard can only execute a program. Use the Advanced Keyboard to enter and check the program.
- 2. Turn the calculator on and press PRGM to enter the programming menu. The menu consists of commands to execute, edit, and create new programs.
- 3. Press C (NEW) and ENTER to open a new program. The calculator is now locked in ALPHA mode and is prepared to accept a name for the new program. Enter the program name.
- 4. You can now enter the program. All program commands are obtained in the program menu. You cannot type program commands using the <u>ALPHA</u> key. To reach this menu, press <u>PRGM</u>. All the program commands begin with an uppercase letter.
- 5. Press CL to exit the program commands. When entering a new program, you must press ENTER at the end of each line.
- 6. If you make a mistake entering a program, use the calculator's editing feature to correct the error. First, you can press the arrow keys to move around the program. Second, you can use the DEL key which deletes a highlighted item, the BS key which backspace deletes an item, and the 2ndF INS keys which allow you to insert new items. Third, the calculator operates in typeover mode which allows you to simply type over a mistake. You must press ENTER after correcting a mistake for the correction to be saved for future use.

EXECUTING A PROGRAM

- After entering the program with the Advanced Keyboard, press 2ndF
 QUIT to save the program and exit the editing mode.
- 2. Execute a program by pressing PRGM A (EXEC) and select the program using the arrow keys and press ENTER.
- 3. If you receive an error statement, press ◀ ▶ to go to the line within the program in which the error occurs. Compare your line with the correct one above to find the error. Correct the error using the editing features of the calculator and press ENTER to save the correction. Press 2ndF QUIT and try to execute the program again.
- 4. Once the program is working, you can execute the program from the Basic Keyboard.

PRIME FACTORIZATION

- Program the calculator to find the prime factorization of a whole number greater than 2. This method decomposes a number into the prime factors 2, 3, 5, etc.
- 2. Create a new program with the name DECOMP. Enter the following program and remember to press ENTER at the end of each line. If you make a mistake, use the calculator's editing features to correct the error.
- Input N PRGM A 3 ALPHA N ENTER 2⇒D 2 STO **ALPHA** D ENTER Label A PRGM **ALPHA** ENTER В 0 1 A 3 If $(N \div D) = int$ PRGM В 0 (ALPHA N + ALPHA MATH B 5 (N÷D) Goto B **ALPHA** D 0) = ALPHA ALPHA D Ν ÷ PRGM 2 **ALPHA** B **ENTER** В 0 D+1⇒D ALPHA D + 1 STO **ALPHA** D **ENTER** If $D \leq \sqrt{N}$ Goto A PRGM **ALPHA** MATH B 0 3 D F 6 2ndF ALPHA Ν PRGM A | ENTER 2 **ALPHA** В 0 Goto C B 0 2 **ALPHA** C ENTER PRGM Label B PRGM В 0 ALPHA В ENTER 1 N÷D⇒N **ALPHA** N **ALPHA** D STO **ALPHA** ÷ N ENTER Print D PRGM **ALPHA** D **ENTER** A 1 ALPHA Goto A PRGM В 0 2 A **ENTER** Label C PRGM B 0 **ALPHA** С ENTER 1 Print N ALPHA Ν **ENTER** PRGM А 1 End PRGM А 6 ENTER
- 3. Enter the following program using the Advanced Keyboard:

Press 2ndF QUIT to exit the editor.

PRIME FACTORIZATION (continued)

4. Execute the DECOMP program from the Basic Keyboard by pressing
PRGM and selecting DECOMP. Enter the number for which you want to find the prime factorization. Try 56. Press 5 6 ENTER to find the prime factorization of 56. You should then see the following prime factorization.

DECOMP	
N= 56	20207

You can repeat this program for other numbers by pressing ENTER to execute the program over and over again. Press CL to clear the screen.

COMMON FACTORS

- 1. Program the calculator to find the common factors and the greatest common factor of any pair of whole numbers.
- 2. Create a new program with the name FACTORS. Enter the following program and remember to press ENTER at the end of each line. If you make a mistake, use the calculator's editing features to correct the error.
- 3. Enter the following program using the Advanced Keyboard:

Input A	PRGM A 3 ALPHA A ENTER
Input B	PRGM A 3 ALPHA B ENTER
2⇒D	2 STO ALPHA D ENTER
Label A	PRGM B 0 1 ALPHA A ENTER
lf fpart (A÷D)π0	PRGM B 0 3 MATH B 4 (
Goto B	ALPHA A ÷ ALPHA D) MATH F
	2 0 PRGM B 0 2 ALPHA B
	ENTER
If fpart (B÷D)π0	PRGM B 0 3 MATH B 4 (
Goto B	ALPHA B ÷ ALPHA D) MATH F
	2 0 PRGM B 0 2 ALPHA B
	ENTER
Print D	PRGM A 1 ALPHA D ENTER
Label B	PRGM B 0 1 ALPHA B ENTER
D+1⇒D	ALPHA D + 1 STO ALPHA D
	ENTER
If D≤min(A,B)	PRGM B 0 3 ALPHA D MATH
Goto A	F 6 MATH B 6 ALPHA A ,
	ALPHA B) PRGM B 0 2
	ALPHA A ENTER
End	PRGM A 6 ENTER

COMMON FACTORS (continued)

4. Execute the FACTORS program from the Basic Keyboard by pressing
PRGM and selecting FACTORS. Enter the numbers for which you want to find the common factors. Try 60 and 48. Press 6 0 ENTER
4 8 ENTER to find the common factors of 60 and 48. You should then see the following common factors.

You can repeat this program for other numbers by pressing ENTER to execute the program over and over again. Press CL to clear the screen.

SYNTHETIC DIVISION

- 1. Program the calculator to perform synthetic division of a polynomial by a linear divisor.
- 2. Create a new program with the name **SYNTHETI**. Enter the following program and remember to press **ENTER** at the end of each line. If you make a mistake, use the calculator's editing features to correct the error.
- 3. Enter the following program using the Advanced Keyboard:

Input D	PRGM A 3 ALPHA D ENTER
0⇒P	0 STO ALPHA P ENTER
$\{D+1,1\} \Rightarrow$	2ndF { ALPHA D + 1 , 1 2ndF
dim(mat A)] STO 2ndF MATRIX C 0 1 2ndF
	MATRIX A 1) ENTER
Print "COEFFIC	PRGM A 1 PRGM 2
IENTS P(X)	2ndF A-LOCK C O E F F I
	C I E N T S SPACE P ALPHA
	$(X/\theta/T/n) = ENTER$
Label A	PRGM B 0 1 ALPHA A ENTER
P+1⇒P	ALPHA P + 1 STO ALPHA P
	ENTER
Input C	PRGM A 3 ALPHA C ENTER
C⇒mat A(P,1)	ALPHA C STO 2ndF MATRIX A 1 (
	ALPHA P , 1) ENTER
If P <d+1< td=""><td>PRGM B 0 3 ALPHA P MATH</td></d+1<>	PRGM B 0 3 ALPHA P MATH
Goto A	F 5 ALPHA D + 1 PRGM
	B 0 2 ALPHA A ENTER
Label B	PRGM B 0 1 ALPHA B ENTER
Input R	PRGM A 3 ALPHA R ENTER
Label C	PRGM B 0 1 ALPHA C ENTER
1⇒P	1 STO ALPHA P ENTER
0⇒S	0 STO ALPHA S ENTER

SYNTHETIC DIVISION (continued)

Print "COEFFIC	PRGM A 1 PRGM 2
IENTS Q(X)	2ndF A-LOCK C O E F F I C
	I E N T S SPACE Q ALPHA (
	$X/\theta/T/n$) ENTER
Label D	PRGM B 0 1 ALPHA D ENTER
mat $A(P,1) \Rightarrow F$	2ndF MATRIX A 1 (ALPHA P , 1
) STO ALPHA F ENTER
F+S⇒Q	ALPHA F + ALPHA S STO ALPHA
	Q ENTER
Print Q	PRGM A 1 ALPHA Q ENTER
Wait	PRGM A 4 ENTER
R×Q⇒S	ALPHA R × ALPHA Q STO ALPHA
	S ENTER
P+1⇒P	ALPHA P + 1 STO ALPHA P
	ENTER
If P <d+1< td=""><td>PRGM B 0 3 ALPHA P MATH</td></d+1<>	PRGM B 0 3 ALPHA P MATH
Goto D	F 5 ALPHA D + 1 PRGM B 0
	2 ALPHA D ENTER
mat A(P,1) \Rightarrow F	2ndF MATRIX A 1 (ALPHA P , 1)
	STO ALPHA F ENTER
F+S⇒Q	ALPHA F + ALPHA S STO ALPHA
	Q ENTER
Print	PRGM A 1 PRGM 2 2ndF
"REMAINDER	A-LOCK R E M A I N D E R
	ALPHA ENTER
Print Q	PRGM A 1 ALPHA Q ENTER
End	PRGM A 6 ENTER

Press 2ndF QUIT to exit the editor.

SYNTHETIC DIVISION (continued)

4. Execute the SYNTHETI program from the Basic Keyboard by pressing
PRGM and selecting SYNTHETI. Use synthetic division to divide
P(x) = 2x³ + 3x² + 4x + 5 by x - 1. Enter the degree for P(x) by pressing
3 ENTER
3 ENTER
2 ENTER
3 ENTER
4 ENTER
5 ENTER
6 Enter the r value of 1 by pressing
1 ENTER
1 ENTER
7 The first coefficients of Q(x) will appear. Press
2 ENTER
1 to see additional coefficients. The remainder will be shown to end the program. You should then see the following coefficients, constant and remainder (Q(x) = 2x² + 5x + 9, remainder = 14).

R= 1 COEFFICIENTS Q(X)	2
REMAINDER	9 14

You can repeat this program for other numbers by pressing ENTER to execute the program over and over again. Press CL to clear the screen.

RANDOM WALKS

- 1. Program the calculator to graph a random walk. A random walk can go in any direction for a random distance. This program stops when the graph tries to go outside the calculator display.
- 2. Create a new program with the name WALK. Enter the following program and remember to press ENTER at the end of each line. If you make a mistake, use the calculator's editing features to correct the error.

ClrDraw	2ndF DRAW A 1 ENTER
0⇒D	0 STO ALPHA D ENTER
.5⇒X	
.5⇒Y	. 5 STO ALPHA Y ENTER
Label A	PRGM B 0 1 ALPHA A ENTER
.2(random–.5)⇒H	. 2 (MATH C 1 – . 5) STO
	ALPHA H ENTER
.2(random–.5)⇒K	. 2 (MATH C 1 – . 5) STO
	ALPHA K ENTER
Line(X,Y,X+H,	2ndF DRAW A 2 X/0/T/n , ALPHA
Y+K)	Y , $X/\theta/T/n$ + ALPHA H , ALPHA
	Y + ALPHA K) ENTER
Х+Н⇒Х	$X/\theta/T/n$ + ALPHA H STO $X/\theta/T/n$ ENTER
Ү+К⇒Ү	ALPHA Y + ALPHA K STO ALPHA
	Y ENTER
If X<0 Goto B	PRGMB03 $X/\theta/T/n$ MATHF
	5 0 PRGM B 0 2 ALPHA B ENTER
If X>1 Goto B	PRGMB03 $X/\theta/T/n$ MATHF31
	PRGM B 0 2 ALPHA B ENTER
If Y<0 Goto B	PRGM B 0 3 ALPHA Y MATH F 5 0
	PRGM B 0 2 ALPHA B ENTER

3. Enter the following program using the Advanced Keyboard:

10 Basic Keyboard/PROGRAMMING USING THE SHARP EL-9900 Copyright © 2002, Sharp Electronics Corporation. Permission is granted to photocopy for educational use only.

RANDOM WALKS (continued)

If Y>1 Goto B	PRGM B 0 3 ALPHA Y MATH F 3
	1 PRGM B 0 2 ALPHA B ENTER
$D + \sqrt{(H^2 + K^2)} \Rightarrow D$	ALPHAD+2ndF \checkmark (ALPHAH
	x ² + ALPHA K x ²) STO ALPHA
	D ENTER
Goto A	PRGM B 0 2 ALPHA A ENTER
Label B	PRGM B 0 1 ALPHA B ENTER
Print D	PRGM A 1 ALPHA D ENTER
End	PRGM A 6 ENTER

4. First, press Y= and CL to clear the Y1 prompt. Press ▼ CL to clear additional prompts if necessary. Set the viewing window for the graphing by pressing WINDOW 0 ENTER 1 ENTER 1 ENTER 0 ENTER 1 ENTER

ROLLING DICE

- 1. Program the calculator to roll a set of dice.
- 2. Create a new program with the name ROLLING. Enter the following program and remember to press ENTER at the end of each line. If you make a mistake, use the calculator's editing features to correct the error.
- 3. Enter the following program using the Advanced Keyboard:

Print "NUMBER	PRGM A 1 PRGM A 2 2ndF
OF DICE	A-LOCK N U M B E R
	SPACE O F SPACE D I C E ENTER
Input N	PRGM A 3 ALPHA N ENTER
0⇒K	0 STO ALPHA K ENTER
Label A	PRGM B 0 1 ALPHA A ENTER
Print int (PRGM A 1 MATH B 5 (
random×6)+1	MATH C 1 × 6) + 1 ENTER
K+1⇒K	ALPHA K + 1 STO ALPHA K
	ENTER
If K <n< td=""><td>PRGM B 0 3 ALPHA K MATH</td></n<>	PRGM B 0 3 ALPHA K MATH
Goto A	F 5 ALPHA N PRGM B 0 2
	ALPHA A ENTER
End	PRGM A 6 ENTER

ROLLING DICE (continued)

4. Execute the ROLLING program by pressing PRGM and selecting ROLLING. Enter the number of dice, up to eight, that you wish the calculator to roll for you. Roll five dice by pressing 5 ENTER. The program will show the five values for the dice on the screen. You should see a screen similar to the following (the values for the dice should be different).

PYTHAGOREAN TRIPLES

- 1. Program the calculator to find Pythagorean triples. Pythagorean triples are three numbers x, y, and z that satisfy $x^2 + y^2 = z^2$.
- 2. Create a new program with the name PYTHAG. Enter the following program and remember to press ENTER at the end of each line. If you make a mistake, use the calculator's editing features to correct the error.
- 3. Enter the following program using the Advanced Keyboard:

Input N	PRGM A 3 ALPHA N ENTER
2⇒J	2 STO ALPHA J ENTER
1⇒K	1 STO ALPHA K ENTER
Label A	PRGM B 0 1 ALPHA A ENTER
If √(J²+K²)≠ipart	PRGMB032ndF \checkmark (ALPHAJ
$(\sqrt{J^2+K^2}))$ Goto B	x ² + ALPHA K x ² MATH F 2
	MATH B 3 (2ndF V (ALPHA
	J x ² + ALPHA K x ²)) PRGM B
	0 2 ALPHA B ENTER
Print J	PRGM A 1 ALPHA J ENTER
Print K	PRGM A 1 ALPHA K ENTER
Print $\sqrt{(J^2+K^2)}$	PRGM A 1 2ndF V (ALPHA
	J x ² + ALPHA K x ²) ENTER
Print "	PRGM A 1 PRGM A 2 ENTER
Wait	PRGM A 4 ENTER
Label B	PRGM B 0 1 ALPHA B ENTER
K+1⇒K	ALPHA K + 1 STO ALPHA K ENTER
lf K≤(J−1)	PRGM B 0 3 ALPHA K MATH
Goto A	F 6 (ALPHA J – 1) PRGM B 0
	2 ALPHA A ENTER
J+1⇒J	ALPHA J + 1 STO ALPHA J ENTER
1⇒K	1 STO ALPHA K ENTER
If J≤N	PRGM B 0 3 ALPHA J MATH

14 Basic Keyboard/PROGRAMMING USING THE SHARP EL-9900 Copyright © 2002, Sharp Electronics Corporation. Permission is granted to photocopy for educational use only.

PYTHAGOREAN TRIPLES (continued)

Goto A	F 6 ALPHA N PRGM B 0 2
	ALPHA A ENTER
End	PRGM A 6 ENTER

Execute the PYTHAG program by pressing PRGM and selecting PYTHAG. Enter the upper bound for the Pythagorean triples. Set the upper bound to 15 by pressing 1 5 ENTER. The program will show the first Pythagorean triple. Press ENTER to view additional triples. You should see screens similar to the following ones.

4 5 8 10	12 5 13 12 12 15
-------------------	---------------------------------