Sharp EL-9900 Graphing Calculator

Basic Keyboard Activities

General Mathematics
Algebra
Programming

Advanced Keyboard Activities

Algebra
Calculus
Statistics
Trigonometry
Programming

Sharp EL-9900
 Graphing Calculator Basic Keypad

CREATING A NEW PROGRAM

1. The Basic keyboard can only execute a program. Use the Advanced Keyboard to enter and check the program.
2. Turn the calculator on and press PRGM to enter the programming menu. The menu consists of commands to execute, edit, and create new programs.
3. Press C (NEW) and ENTER to open a new program. The calculator is now locked in ALPHA mode and is prepared to accept a name for the new program. Enter the program name.
4. You can now enter the program. All program commands are obtained in the program menu. You cannot type program commands using the ALPHA key. To reach this menu, press PRGM. All the program commands begin with an uppercase letter.
5. Press CL to exit the program commands. When entering a new program, you must press ENTER at the end of each line.
6. If you make a mistake entering a program, use the calculator's editing feature to correct the error. First, you can press the arrow keys to move around the program. Second, you can use the DEL key which deletes a highlighted item, the BS key which backspace deletes an item, and the 2ndF INS keys which allow you to insert new items. Third, the calculator operates in typeover mode which allows you to simply type over a mistake. You must press ENTER after correcting a mistake for the correction to be saved for future use.

EXECUTING A PROGRAM

1. After entering the program with the Advanced Keyboard, press 2ndF

QUIT to save the program and exit the editing mode.
2. Execute a program by pressing PRGM A (EXEC) and select the program using the arrow keys and press ENTER.
3. If you receive an error statement, press $\square \square$ to go to the line within the program in which the error occurs. Compare your line with the correct one above to find the error. Correct the error using the editing features of the calculator and press ENTER to save the correction. Press 2 ndF QUIT and try to execute the program again.
4. Once the program is working, you can execute the program from the Basic Keyboard.

1. Program the calculator to find the prime factorization of a whole number greater than 2. This method decomposes a number into the prime factors $2,3,5$, etc.
2. Create a new program with the name DECOMP. Enter the following program and remember to press ENTER at the end of each line. If you make a mistake, use the calculator's editing features to correct the error.
3. Enter the following program using the Advanced Keyboard:

Input N
$2 \Rightarrow \mathrm{D}$
Label A
If $(\mathrm{N} \div \mathrm{D})=$ int
$(\mathrm{N} \div \mathrm{D})$ Goto B
$\mathrm{D}+1 \Rightarrow \mathrm{D}$

If $\mathrm{D} \leq \sqrt{ } \mathrm{N}$ Goto A

PRGM	A	3	ALPHA
N	ENTER		

2 STO ALPHA D ENTER

| ALPHA | D | + | STO ALPHA D |
| :--- | :--- | :--- | :--- | :--- | ENTER

Goto C
Label B
$\mathrm{N} \div \mathrm{D} \Rightarrow \mathrm{N}$

Print D
Goto A
Label C
Print N
End

PRGM	B	0	3	ALPHA	D	MATH
F 6	2ndF		\checkmark	ALPHA	N	PRGM
B 0	2 ALPHA			A	ENTER	
PRGM	B	0	2	ALPHA	C	ENTER

PRGM	B	0	1	ALPHA	B	ENTER
ALPHA	N	\div	ALPHA	D	STO	ALPHA

N ENTER

PRGM	A	1	ALPHA	D	ENTER

PRGM	B	0	2	ALPHA	A	ENTER	
PRGM	B	0	1	1	ALPHA	C	ENTER

| PRGM | A | 1 | ALPHA |
| :--- | :--- | :--- | :--- | :--- |
| PRGM | A | 6 | ENTER |

Press 2ndF QUIT to exit the editor.

PRIME FACTORIZATION (continued)

4. Execute the DECOMP program from the Basic Keyboard by pressing PRGM and selecting DECOMP. Enter the number for which you want to find the prime factorization. Try 56. Press 566 ENTER to find the prime factorization of 56 . You should then see the following prime factorization.

DECOMF'	
$\begin{aligned} & \stackrel{E}{5}= \\ & 56 \end{aligned}$	
	$\frac{2}{2}$

You can repeat this program for other numbers by pressing ENTER to execute the program over and over again. Press CL to clear the screen.

COMMON FACTORS

1. Program the calculator to find the common factors and the greatest common factor of any pair of whole numbers.
2. Create a new program with the name FACTORS. Enter the following program and remember to press ENTER at the end of each line. If you make a mistake, use the calculator's editing features to correct the error.
3. Enter the following program using the Advanced Keyboard:

Input A
Input B
$2 \Rightarrow \mathrm{D}$
Label A
If fpart ($\mathrm{A} \div \mathrm{D}$) $\pi 0$
Goto B
fpart (Bㄷ) $\pi 0$
Goto B

Print D
Label B
$\mathrm{D}+1 \Rightarrow \mathrm{D}$

If $\mathrm{D} \leq \min (\mathrm{A}, \mathrm{B})$
Goto A

End

PRGM	A 3	ALPHA	A	ENTER		
PRGM	A 3	ALPHA	B	ENTER		
2 STO	ALPHA D ENTER					
PRGM	B 0	ALPHA A ENTER				
PRGM	B	MATH B 4				
ALPHA	A	ALPHA D) MATH				F
20	PRGM B 002 ALPHA					
ENTER						
PRGM	B $\begin{array}{\|l\|} \hline 0 \\ \hline \end{array}$	3 MATH B 4 (
ALPHA	B	ALPHA D \quad D MATH				F
20	PRGM	B 0	2	ALPHA	B	

ENTER

PRGM	A	1	ALPHA		ENTER	
PRGM	B	0	1	ALPHA	B	ENTER
ALPHA	D	+	1	STO	ALPHA	D

ENTER

COMMON FACTORS (continuee)

4. Execute the FACTORS program from the Basic Keyboard by pressing PRGM and selecting FACTORS. Enter the numbers for which you want to find the common factors. Try 60 and 48. Press 60 ENTER 48 ENTER to find the common factors of 60 and 48 . You should then see the following common factors.

$6 \underline{6}$	
$4 B$	
	2
	$\frac{2}{1}$
	4
	12

You can repeat this program for other numbers by pressing ENTER to execute the program over and over again. Press CL to clear the screen.

SYNTHETIC DIVISION

1. Program the calculator to perform synthetic division of a polynomial by a linear divisor.
2. Create a new program with the name SYNTHETI. Enter the following program and remember to press ENTER at the end of each line. If you make a mistake, use the calculator's editing features to correct the error.
3. Enter the following program using the Advanced Keyboard:

Input D
$0 \Rightarrow \mathrm{P}$
$\{\mathrm{D}+1,1\} \Rightarrow$
$\operatorname{dim}($ mat A)

Print "COEFFIC
IENTS P(X)

Label A
$\mathrm{P}+1 \Rightarrow \mathrm{P}$

Input C
$\mathrm{C} \Rightarrow$ mat $\mathrm{A}(\mathrm{P}, 1)$

If $\mathrm{P}<\mathrm{D}+1$
Goto A

Label B
Input R
Label C
$1 \Rightarrow P$
$0 \Rightarrow S$

SYNTHETIC DIVISION (continued)

Press 2 ndF QUIT to exit the editor.

SYNTHETIC DIVISION (continued)

4. Execute the SYNTHETI program from the Basic Keyboard by pressing PRGM and selecting SYNTHETI. Use synthetic division to divide $P(x)=2 x^{3}+3 x^{2}+4 x+5$ by $x-1$. Enter the degree for $P(x)$ by pressing 3 ENTER. Next enter the coefficients and constant for $\mathrm{P}(\mathrm{x})$ by pressing
 value of 1 by pressing 11 ENTER. The first coefficient of $\mathrm{Q}(\mathrm{x})$ will appear. Press ENTER to see additional coefficients. The remainder will be shown to end the program. You should then see the following coefficients, constant and remainder $\left(Q(x)=2 x^{2}+5 x+9\right.$, remainder $\left.=14\right)$.

You can repeat this program for other numbers by pressing ENTER to execute the program over and over again. Press CL to clear the screen.

RANDOM WALKS

1. Program the calculator to graph a random walk. A random walk can go in any direction for a random distance. This program stops when the graph tries to go outside the calculator display.
2. Create a new program with the name WALK. Enter the following program and remember to press ENTER at the end of each line. If you make a mistake, use the calculator's editing features to correct the error.
3. Enter the following program using the Advanced Keyboard:

RANDOM WALKS (continued)

4. First, press $\mathrm{Y}=$ and CL to clear the Y 1 prompt. Press $\nabla \mathrm{CL}$ to clear additional prompts if necessary. Set the viewing window for the graphing by pressing WINDOW 0 ENTER 11 ENTER 1 ENTER 0
 pressing PRGM and selecting WALK. The program will show you the random walk and then display the distance traveled in the walk. If your walk is short, then press ENTER to execute the program again. When you have a long walk, press GRAPH to view the graph. A long walk is greater than 10 .

ROLLING DICE

1. Program the calculator to roll a set of dice.
2. Create a new program with the name ROLLING. Enter the following program and remember to press ENTER at the end of each line. If you make a mistake, use the calculator's editing features to correct the error.
3. Enter the following program using the Advanced Keyboard:

ROLLING DICE (continued)

4. Execute the ROLLING program by pressing PRGM and selecting

ROLLING. Enter the number of dice, up to eight, that you wish the calculator to roll for you. Roll five dice by pressing 5 ENTER. The program will show the five values for the dice on the screen. You should see a screen similar to the following (the values for the dice should be different).

PYTHAGOREAN TRIPLES

1. Program the calculator to find Pythagorean triples. Pythagorean triples are three numbers x, y, and z that satisfy $x^{2}+y^{2}=z^{2}$.
2. Create a new program with the name PYTHAG. Enter the following program and remember to press ENTER at the end of each line. If you make a mistake, use the calculator's editing features to correct the error.
3. Enter the following program using the Advanced Keyboard:

Input N
$2 \Rightarrow \mathrm{~J}$
$1 \Rightarrow K$
Label A
If $\sqrt{ }\left(\mathrm{J}^{2}+\mathrm{K}^{2}\right) \neq$ ipart
$\left(\sqrt{ }\left(\mathrm{J}^{2}+\mathrm{K}^{2}\right)\right)$ Goto B

Print J
Print K
Print $\sqrt{ }\left(\mathrm{J}^{2}+\mathrm{K}^{2}\right)$

Print "
Wait
Label B
$\mathrm{K}+1 \Rightarrow \mathrm{~K}$
If $\mathrm{K} \leq(\mathrm{J}-1)$
Goto A
$\mathrm{J}+1 \Rightarrow \mathrm{~J}$
$1 \Rightarrow K$
If $\mathrm{J} \leq \mathrm{N}$

PYTHAGOREAN TRIPLES (continued)

Goto A
End

$\mathrm{F} \mid 6$	ALPHA	N
PRGI		
ALPHA	A	ENTER
PRGM	A	6

4. Execute the PYTHAG program by pressing PRGM and selecting

PYTHAG. Enter the upper bound for the Pythagorean triples. Set the upper bound to 15 by pressing | 1 | ENTER |
| :--- | :--- | Pythagorean triple. Press ENTER to view additional triples. You should see screens similar to the following ones.

