Evaluating Absolute Value Functions

The absolute value of a real number x is defined by the following:

$$|x| = x \text{ if } x \ge 0$$
$$-x \text{ if } x \le 0$$

Note that the effect of taking the absolute value of a number is to strip away the minus sign if the number is negative and to leave the number unchanged if it is nonnegative. Thus, $|x| \ge 0$ for all values of x.

<u>Example</u>

Evaluate various absolute value functions.

2. Is
$$|-2+7| = |-2| + |7|$$
?

Evaluate each side of the equation to check your answer.

Is
$$|x + y| = |x| + |y|$$
 for all real numbers x and y ?

If not, when will
$$|x + y| = |x| + |y|$$
?

3. Is
$$\left| \frac{6-9}{1+3} \right| = \left| \frac{6-9}{1+3} \right|$$
?

Evaluate each side of the equation to check your answer. Investigate with more examples, and decide if you think |x/y| = |x|/|y|

Before There may be differences in the results of calculations and graph plotting depending on the setting. **Starting** Return all settings to the default value and delete all data.

Step & Key Operation

Display

Notes

1-1 Access the home or computation screen.

#-×÷ _

1-2 Enter y = /-2(5-1) /and evaluate.

MATH B 1 (-) 2 (5 —

1) ENTER

The solution is ± 8 .

2-1 Evaluate | -2 + 7 |. Evaluate | -2 | + | 7 |. T-2+7|

CL

|-2 + 7| = 5, |-2| + |7| = 9 $\rightarrow |-2 + 7| \neq |-2| + |7|.$

MATH 1 (-) 2 + 7 ENTER

 MATH
 1
 (-)
 2
 ▶
 +
 MATH

1 7 ENTER

Step & Key Operation

Display

Notes

2-2 Is |x + y| = |x| + |y|? Think about this problem according to the cases when *x* or *y* are positive or negative.

If
$$x \ge 0$$
 and $y \ge 0$
[e.g.; $(x, y) = (2,7)$]

If
$$x \le 0$$
 and $y \ge 0$
[e.g.; $(x, y) = (-2, 7)$]

If
$$x \ge 0$$
 and $y \le 0$ [e.g.; $(x, y) = (2, -7)$]

If
$$x \le 0$$
 and $y \le 0$ [e.g.; $(x, y) = (-2, -7)$]

|x+y| = |2+7| = 9|x| + |y| = |2| + |7| = 9 $\rightarrow |X + Y| = |X| + |Y|.$

$$|X+Y| = |-2+7| = 5$$

 $|X|+|Y| = |-2| + |7| = 9$

$$|x| + |y| = |-2| + |7| = 9$$

 $\rightarrow |x + y| \neq |x| + |y|.$

$$|X+Y| = |2-7| = 5$$

 $|X|+|Y| = |2| + |-7| = 9$

$$\rightarrow |x+y| \neq |x| + |y|.$$

$$|x+y| = |-2-7| = 9$$

 $|x|+|y| = |-2| + |-7| = 9$

1+3

$$\rightarrow |x+y| = |x| + |y|.$$

 $\left| \frac{30}{1+3} \right| = 0.75$, $\left| \frac{30}{1+3} \right| = 0.75$

 $\rightarrow \left| \frac{6-9}{1+3} \right| = \frac{\mid 6-9 \mid}{\mid 1+3 \mid}$

Therefore |x+y| = |x| + |y| when $x \ge 0$ and $y \ge 0$, and when $x \le 0$ and $y \le 0$.

3-1 Evaluate $\left| \frac{6-9}{1+3} \right|$. Evaluate $\frac{|6-9|}{|1+3|}$.

MATH + | 3 | ENTER |

3-2 Is |x/y| = |x|/|y|? Think about this problem according to the cases when x or y are positive or negative.

> If $x \ge 0$ and $y \ge 0$ [e.g.; (x, y) = (2,7)]

If
$$x \le 0$$
 and $y \ge 0$ [e.g.; $(x, y) = (-2, 7)$]

If $x \ge 0$ and $y \le 0$ [e.g.; (x, y) = (2, -7)]

If $x \le 0$ and $y \le 0$ [e.g.; (x, y) = (-2, -7)]

|x/y| = |(-2)/7| = 2/7|X|/|Y| = |-2|/|7| = 2/7

|x/y| = |2/(-7)| = 2/7

|X|/|y| = |2|/|-7| = 2/7

|X/Y| = |(-2)/-7| = 2/7|X|/|Y| = |-2|/|-7| = 2/7

|x/y| = |2/7| = 2/7|x|/|y| = |2|/|7| = 2/7

 $\rightarrow |X/Y| = |X|/|Y|$

 $\rightarrow |X/Y| = |X|/|Y|$

 $\rightarrow |x/y| = |x|/|y|$

 $\rightarrow |X/y| = |X|/|y|$

The statement is true for all $y \neq 0$.

The EL-9900 shows absolute values with | |, just as written on paper, by using the Equation editor. The nature of arithmetic of the absolute value can be learned through arithmetical operations of absolute value functions.