Evaluating Absolute Value Functions

The absolute value of a real number x is defined by the following:

$$
\begin{array}{ll}
|x|= & x \text { if } x \geq 0 \\
& -x \text { if } x \leq 0
\end{array}
$$

Note that the effect of taking the absolute value of a number is to strip away the minus sign if the number is negative and to leave the number unchanged if it is nonnegative.
Thus, $|x| \geq 0$ for all values of x.

Example

Evaluate various absolute value functions.

1. Evaluate $|-2(5-1)|$
2. Is $|-2+7|=|-2|+|7|$?

Evaluate each side of the equation to check your answer.
Is $|x+y|=|x|+|y|$ for all real numbers x and y ?
If not, when will $|x+y|=|x|+|y|$?
3. Is $\left|\frac{6-9}{1+3}\right|=\left|\frac{6-9}{1+3}\right|$?

Evaluate each side of the equation to check your answer. Investigate with more examples, and decide if you think $|x / y|=|x| /|y|$

Before There may be differences in the results of calculations and graph plotting depending on the setting.
Starting Return all settings to the default value and delete all data.

Step \& Key Operation

Display

Notes

1-1 Access the home or computation screen.

\section*{| 田舃 |
| :--- |}

1-2 Enter $y=|-2(5-1)|$ and evaluate.

The solution is ± 8.

2-1 Evaluate| $-2+7 \mid$. Evaluate $-2|+|7|$

1	7	ENTER

Step \& Key Operation

Display

Notes

2-2 Is $|x+y|=|x|+|y|$? Think about this problem according to the cases when x or y are positive or negative.

$$
\text { If } x \geq 0 \text { and } y \geq 0
$$

[e.g.; $(x, y)=(2,7)]$
If $x \leq 0$ and $y \geq 0$
[e.g.; $(x, y)=(-2,7)]$
If $x \geq 0$ and $y \leq 0$
[e.g.; $(x, y)=(2,-7)]$
If $x \leq 0$ and $y \leq 0$
[e.g.; $(\mathrm{x}, \mathrm{y})=(-2,-7)$]

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
x+y|=|2+7|=9 \\
x|+|y|=|2|+|7|=9
\end{array}\right. \\
& \rightarrow|x+y|=|x|+|y| . \\
& |x+y|=|-2+7|=5 \\
& |x|+|y|=|-2|+|7|=9 \\
& \rightarrow|x+y| \neq|x|+|y| . \\
& |x+y|=|2-7|=5 \\
& |x|+|y|=|2|+|-7|=9 \\
& \rightarrow|x+y| \neq|x|+|y| . \\
& |x+y|=|-2-7|=9 \\
& |x|+|y|=|-2|+|-7|=9
\end{aligned}
$$

Therefore $|x+y|=|x|+|y|$ when $x \geq 0$ and $y \geq 0$, and when $\mathrm{x} \leq 0$ and $\mathrm{y} \leq 0$.

3-1 Evaluate $\left|\frac{6-9}{1+3}\right|$. Evaluate $\frac{|6-9|}{|1+3|}$.

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline \mathbf{C L} & \text { МАТН } & 1 & \mathbf{a} / \mathrm{b} & 6 & - & 9 \\
\hline
\end{array}
$$

- 1 + 3 ENTER

3-2 Is $|x / y|=|x| /|y|$?
Think about this problem according to the cases when x or y are positive or negative.

If $x \geq 0$ and $y \geq 0$
[e.g.; $(x, y)=(2,7)]$
If $x \leq 0$ and $y \geq 0$
[e.g.; $(x, y)=(-2,7)]$
If $x \geq 0$ and $y \leq 0$
[e.g.; (x, y) = (2, -7)]
If $x \leq 0$ and $y \leq 0$
[e.g.; $(\mathrm{x}, \mathrm{y})=(-2,-7)]$
$|x / y|=|2 / 7|=2 / 7$
$|x| /|y|=|2| /|7|=2 / 7$

$$
|x / y|=|(-2) / 7|=2 / 7
$$

$$
\rightarrow|x / y|=|x| /|y|
$$

$$
|\mathrm{x}| /|\mathrm{y}|=|-2| /|7|=2 / 7
$$

$$
|x / y|=|2 /(-7)|=2 / 7
$$

$$
\rightarrow|\mathrm{x} / \mathrm{y}|=|\mathrm{x}| /|\mathrm{y}|
$$

$$
|\mathrm{x}| /|\mathrm{y}|=|2| /|-7|=2 / 7
$$

$$
|x / y|=|(-2) /-7|=2 / 7
$$

$$
\rightarrow|\mathrm{x} / \mathrm{y}|=|\mathrm{x}| /|\mathrm{y}|
$$

$$
|\mathrm{x}| /|\mathrm{y}|=|-2| /|-7|=2 / 7
$$

The statement is true for all $\mathrm{y} \neq 0$.

$$
\rightarrow|x / y|=|x| /|y|
$$

The EL-9900 shows absolute values with \| \| , just as written on paper, by using the Equation editor. The nature of arithmetic of the absolute value can be learned through arithmetical operations of absolute value functions.

