Graphing Circles

The standard equation of a circle of radius r that is centered at a point (h, k) is $(\mathrm{x}-h)^{2}+$ $(y-k)^{2}=r^{2}$. In order to put an equation in standard form so that you can graph in rectangular mode, it is necessary to solve the equation for y. You therefore need to use the process of completing the square.

Example

Graph the circles in rectangular mode. Solve the equation for y to put it in the standard form.

$$
\begin{aligned}
& \text { 1. } \text { Graph } x^{2}+y^{2}=4 \\
& \text { 2. } \text { Graph } x^{2}-2 x+y^{2}+4 y=2
\end{aligned}
$$

Before There may be differences in the results of calculations and graph plotting depending on the setting.
Starting Return all settings to the default value and delete all data.

Step \& Key Operation

Display

$$
\begin{aligned}
& y^{2}=4-x^{2} \\
& y= \pm \sqrt{4-x^{2}}
\end{aligned}
$$

Enter $\mathrm{y}=\sqrt{4-\mathrm{x}^{2}}$ for Y1 (the top half). Enter $y=-\sqrt{4-x^{2}}$ for Y2.

ENTER	$(-)$	2nd F	VARS	A
		ENTER	1	

1-2 View the graph.

GRAPH

This is a circle of radius r, centered at the origin.

Solve the equation for y, completing the square.

$$
\begin{array}{ll}
x^{2}-2 x+y^{2}+4 y=2 & \begin{array}{l}
\text { Place all variable terms on the } \\
\text { left and the constant term on } \\
\text { the right-hand side of the } \\
\text { equation. }
\end{array} \\
x^{2}-2 x+y^{2}+4 y+4=2+4 & \begin{array}{l}
\text { Complete the square on the } \\
\text { y-term. }
\end{array} \\
x^{2}-2 x+(y+2)^{2}=6 & \begin{array}{l}
\text { Express the terms in y as a } \\
\text { perfect square. }
\end{array} \\
(y+2)^{2}=6-x^{2}+2 x & \begin{array}{l}
\text { Leave only the term involving } \\
\text { y on the left hand side. }
\end{array} \\
y+2= \pm \sqrt{6-x^{2}+2 x} & \begin{array}{l}
\text { Take the square root of both } \\
\text { sides. }
\end{array} \\
y= \pm \sqrt{6-x^{2}+2 x}-2 & \begin{array}{l}
\text { Solve for } y .
\end{array}
\end{array}
$$

Notes

2-2 Enter $\mathrm{y}=\sqrt{6-\mathrm{x}^{2}+2 \mathrm{x}}$ for Y 1 , $\mathrm{y}=\mathrm{Y} 1-2$ for Y 2 , and $\mathrm{y}=-\mathrm{Y} 1-2$ for Y3.

X^{2}	$\mathbf{+}$	$\mathbf{2} / \theta / \mathrm{T} / n$
ENTER	$\mathbf{C L}$	

| 2nd F Vars A ENTER | 1 | - |
| :--- | :--- | :--- | :--- | :--- | :--- |

2 ENTER

2-3 "Turn off" Y1 so that it will not graph.

Notice that if you enter $\mathrm{y}=\sqrt{6-\mathrm{x}^{2}+2 \mathrm{x}}-2$ for Y 1 and $\mathrm{y}=-\mathrm{Y} 1$ for Y 2 , you will not get the graph of a circle because the " \pm " does not go with the " 2 ".

2-4 Adjust the screen so that the whole graph is shown. Shift 2 units downwards.

Graphing circles can be performed easily on the calculator display.

