Graphing Ellipses

The standard equation for an ellipse whose center is at the point (h, k) with major and minor axes of length a and b is $\frac{(\mathrm{x}-h)^{2}}{\mathrm{a}^{2}}+{\frac{(\mathrm{y}-\mathrm{k})}{\mathrm{b}^{2}}}^{2}=1$.

There is a problem entering this equation in the calculator graphing list for two reasons:
a) it is not a function, and only functions can be entered in the $\mathrm{Y}=$ list locations.
b) the functions entered in the $Y=$ list locations must be in terms of x, not y.

To draw a graph of an ellipse, consider the "top" and "bottom" halves of the ellipse as two different parts of the graph because each individual is a function. Solve the equation of the ellipse for y and enter the two parts in two locations of the $\mathrm{Y}=$ list.

Example

Graph an ellipse in rectangular mode. Solve the equation fory to put it in the standard form.

Graph the ellipse $3(x-3)^{2}+(y+2)^{2}=3$

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

Notes

1 Solve the equation for y , completing the square.
Enter

$$
Y 1=\sqrt{3-3(x-3)^{2}}
$$

$$
\mathrm{Y} 2=\mathrm{Y} 1-2
$$

$$
\mathrm{Y} 3=-\mathrm{Y} 1-2
$$

2 Turn off Y1 so that it will not graph. $\sqrt{Y 1=\sqrt{3-3(x-3)^{2}}}$

Notes

3 View the graph.
GRAPH

4 Adjust the screen so that the whole graph is shown. Shift 2 units downwards.
wnoow

(3 times)

2 ENTER

-1	2

Graphing an ellipse can be performed easily on the calculator display.

