Graphing H yperbolas

The standard equation for a hyperbola can take one of two forms:
$\frac{(\mathrm{x}-h)^{2}}{\mathrm{a}^{2}}-\frac{(\mathrm{y}-\mathrm{k})^{2}}{\mathrm{~b}^{2}}=1$ with vertices at $(h \pm \mathrm{a}, \mathrm{k})$ or
$\frac{(\mathrm{x}-\mathrm{k})^{2}}{\mathrm{~b}^{2}}-\frac{(\mathrm{y}-h)^{2}}{\mathrm{a}^{2}}=1$ with vertices at ($h, \mathrm{k} \pm \mathrm{b}$).
There is a problem entering this equation in the calculator graphing list for two reasons:
a) it is not a function, and only functions can be entered in the $\mathrm{Y}=$ list locations.
b) the functions entered in the $\mathrm{Y}=$ list locations must be in terms of x , not y .

To draw a graph of a hyperbola, consider the "top" and "bottom" halves of the hyperbola as two different parts of the graph because each individual is a function. Solve the equation of the hyperbola for y and enter the two parts in two locations of the $\mathrm{Y}=$ list.

Example

Graph a hyperbola in rectangular mode. Solve the equation for y to put it in the standard form.

Graph the hyperbola $x^{2}+2 x-y^{2}-6 y+3=0$

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

$$
\text { Set the zoom to the decimal window: } \mathrm{ZOOM} \text { A (ENTER ALPHA } \overline{\boldsymbol{\nabla}}) \mathbf{7}
$$

Step \& Key Operation

Display

Notes

1 Solve the equation for y completing the square.
Enter
$Y 1=\sqrt{x^{2}+2 x+12}$
$\mathrm{Y} 2=\mathrm{Y} 1-3$
$\mathrm{Y} 3=-\mathrm{Y} 1-3$

XATTM +122 ENTER
2nd F VARS A ENTER $11-3,3$ ENTER

2 Turn off Y1 so that it will not graph. $\sqrt{Y 1}=\sqrt{X^{2}+2 X+12}$

- $\mathbf{\Delta}$ ENTER

Notes

3 View the graph.
GRAPH

4 Zoom out the screen.

200 M	4

