Parallel and Perpendicular Lines

Parallel and perpendicular lines can be drawn by changing the slope of the linear equation and the y intercept. A linear equation of y in terms of x can be expressed by the slopeintercept form $y=m x+b$, where m is the slope and b is the y-intercept.
Parallel lines have an equal slope with different y-intercepts. Perpendicular lines have slopes that are negative reciprocals of each other $\left(\mathrm{m}=-\frac{1}{\mathrm{~m}}\right)$. These characteristics can be verified by graphing these lines.

Example

Graph parallel lines and perpendicular lines.

1. Graph the equations $\mathrm{y}=3 \mathrm{x}+1$ and $\mathrm{y}=3 \mathrm{x}+2$.
2. Graph the equations $\mathrm{y}=3 \mathrm{x}-1$ and $\mathrm{y}=-\frac{1}{3} \mathrm{x}+1$.

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

Step \& Key Operation

Display

Notes

1.1

Enter the equations $y=3 x+1$ for Y 1 and $\mathrm{y}=3 \mathrm{x}+2$ for Y 2 .

$Y=3$	xөit//	+	1	ENTER
XөөT//	+	2		

1.2 View the graphs.

GRAPH

These lines have an equal slope but different y-intercepts. They are called parallel, and will not intersect.

2-1 Enter the equations $y=3 x-1$ for Y 1 and $\mathrm{y}=-\frac{1}{3} \mathrm{x}+1$ for Y 2 .

$\mathrm{Y}=$	CL	3	Хөөт/	-	1	Enter
CL	(-)	1	a/b	3	-	XөөTM
+	1					

 . -

Step \& Key Operation

2-2 View the graphs.
GRAPH

Display

Notes

These lines have slopes that are negative reciprocals of each other $\left(m=-\frac{1}{m}\right)$. They are called perpendicular. Note that these intersecting lines form four equal angles.

The Graphing Calculator can be used to draw parallel or perpendicular lines while learning the slope or y-intercept of linear equations.

