System of Two-Variable Inequalities

The solution region of a system of two-variable inequalities consists of all points (a, b) such that when $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$, all inequalities in the system are true. To solve two-variable inequalities, the inequalities must be manipulated to isolate the y variable and enter the other side of the inequality as a function. The calculator will only accept functions of the form $\mathrm{y}=$ \qquad . (where y is defined explicitly in terms of x).

Example

Solve a system of two-variable inequalities by shading the solution region.

$$
\begin{aligned}
& 2 x+y \geq 1 \\
& x^{2}+y \leq 1
\end{aligned}
$$

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

Step \& Key Operation

1 Rewrite each inequality in the system so that the left-hand side is y :

Display

3 Access the set shade screen

1

4 Shade the points of y -value so that $\mathrm{Y} 1 \leq \mathrm{y} \leq \mathrm{Y} 2$.

5 Graph the system and find the intersections.
GRAPH
2nd F CALC 2 2nd F CALC 2
6 Solve the system.

The intersections are (0,1) and (2, -3)

Graphical solution methods not only offer instructive visualization of the solution process, but they can be applied to inequalities that are often difficult to solve algebraically. The EL-9900 allows the solution region to be indicated visually using the Shade feature. Also, the points of intersection can be obtained easily.

