# SCIENTIFIC CALCULAJOR <br> OperATION GUIDE 

## < EL-506TS >



## CONTENTS

HOW TO OPERATE
Read Before Using
Key layout ..... 4
Reset switch/Display pattern ..... 5
Display format and decimal setting function Ssitup ..... 5-6
Exponent display Exp ..... 6
Angular unit ..... 7
Functions and Key Operations
ON/OFF, entry correction keys
Data entry keys ..... 9
Random key ..... 10
Modify key ..... 11
Basic arithmetic keys, parentheses ..... 12
Percent ..... 13
Inverse, square, cube, $x$ th power of $y$, square root, cube root, $x$ th root $\quad \stackrel{x^{-1}}{x^{2}} \sqrt[x^{3}]{y x} \sqrt{ } \underbrace{\sqrt[3]{ }-x^{x}}$ ..... 14
10 to the power of $x$, common logarithm $10 x \sqrt{\log }$ ..... 15
e to the power of $x$, natural logarithm $\quad e^{x}$ In ..... 16
Factorials ..... 17
Permutations, combinations ..... 18
Time calculation ..... 19
Fractional calculations ..... 20
Memory calculations ..... 
Last answer memory ..... 22
Formula memories ..... 23
Trigonometric functions $\sin \cos \tan$ ..... 24-26
Arc trigonometric functions  ..... 27
Hyperbolic functions hyp arc hyp ..... 28
Coordinate conversion $\rightarrow r \theta \rightarrow x y \rightarrow+\cdots$ ..... 29
Binary, pental, octal, decimal, andhexadecimal operations (N-base)$\rightarrow$ BIN $\rightarrow$ PEN $\rightarrow$ OCT $\rightarrow$ DEC $\rightarrow$ HEX30

## CONTENTS

| Differentiation calculation | $\sqrt{1 / d x} \times x^{2}$ | 31 |
| :---: | :---: | :---: |
| Integration calculation | [dx $x^{\text {a }}$ | 32 |
| Simulation calculation | ${ }^{\text {AlGB }}$ | 33 |
| Statistics functions | (100E ${ }_{(x, y)} \overbrace{\text { DATA }} \overbrace{\text { CD }}$ | 34 |
| Data input for 1-variable statistics |  | 34 |
| "ANS" keys for 1-variable statistics |  | 35 |
| Data correction |  | 36-37 |
| Data input for 2-variable statistics |  | 38 |
| "ANS" keys for 2-variable statistics |  | 39 |
| Simultaneous calculation | 100E | 40 |
| Complex calculation | $\xrightarrow[\sim 00 E]{\rightarrow x y} \rightarrow r \theta \square$ | 41 |
| Matrix calculation | MOOE MATH | 42-43 |

## How to Operate

## $\approx$ Read Before Using $\approx$

This operation guide has been written based on the EL-506TS model.

## 1. KEY LAYOUT



## HOME key

Pressing this key will return to NORMAL mode.

- Mode key

This calculator can operate in six different modes as follows.
[NORMAL mode] •Mode $=0$; normal mode for MODE $0 \quad \begin{aligned} & \text { performing normal } \\ & \text { arithmetic and function }\end{aligned}$ calculations.
[STAT mode] $\cdot$ Mode $=1$; mode for MODE 1 performing 1- or 2-variable statistical calculations. To select the sub-mode, press the corresponding number key after mooe 1 .
0 (SD): Single variable statistic calculation
1 (LINE): Linear regression calculation
2 (QUAD): Quadratic regression calculation
3 (EXP): Exponential regression calculation
4 (LOG): Logarithmic regression calculation
5 (POWER): Power regression calculation
6 (INV): Inverse regression calculation
[EQN mode] $\cdot$ Mode $=2$; mode for equation MODE 2 solvers. To select the sub-mode, press the corresponding number key after mooe 2 .
0 (2-VLE): Simultaneous linear equation with two unknowns
1 (3-VLE): Simultaneous linear equation with three unknowns
2 (QUAD): Quadratic equation $\left(a x^{2}+b x+c=0\right)$
3 (CUBIC): Cubic equation $\left(a x^{3}+b x^{2}+c x+d=0\right)$
[CPLX mode] $\cdot$ Mode $=3$; mode for MODE 3 lamplex number
[MAT mode] $\cdot$ Mode $=4$; mode for

[LIST mode] $\cdot$ Mode $=5$; mode for
 matrix calculations.

## 2. RESET SWITCH

If the calculator fails to operate normally, press the reset switch on the front to reinitialise the unit. The display format and calculation mode will return to their initial settings.

NOTE:
Pressing the reset switch will erase any data stored in memory.


## 3. DISPLAY PATTERN



## 4. DISPLAY FORMAT AND DECIMAL SETTING FUNCTION

For convenient and easy operation, this model can be used in one of five display modes. The selected display status is shown in the upper part of the display (Display format indicator). Note: If more 0's (zeros) than needed are displayed when the ON/C key is pressed, check whether or not the calculator is set to a Special Display Format.

- Floating decimal point format $1 / 2$ (no symbol is displayed) *1 Valid values beyond the maximum range are displayed in the form of [10-digit (mantissa) + 2-digit (exponent)]
- Fixed decimal point format (FIX is displayed) Displays the fractional part of the calculation result according to the specified number of decimal places.
- Scientific notation (SCI is displayed)

Frequently used in science to handle extremely small or large numbers.

- Engineering scientific notation (ENG is displayed) Convenient for converting between different units.
*1 The calculator has two settings for displaying a floating point number: NORM1 (default setting) and NORM2. In each display setting, a number is automatically displayed in scientific notation outside a preset range:
- NORM1: $0.000000001 \leq x \leq 9999999999$
- NORM2: $0.01 \leq x \leq 9999999999$
<Example> Let's compare the display result of [ $10000 \div 8.1=]$ in each display format.



## $10000 \div 8^{\text {gea }} 1=$


(NORM1 mode)

$10000^{\circ 8 \mathrm{cos}} \div 8^{\text {good }} 1=$
$1.235_{x 0}{ }^{03}$
(SCI mode)
$10000 \div 8.1=$

(ENG mode)
$10000 \div 8^{\text {最. }} 1=$
1234.567901
(NORM1 mode)

## 5. EXPONENT DISPLAY

The distance from the earth to the sun is approx. 150,000,000 $\left(1.5 \times 10^{8}\right) \mathrm{km}$. Values such as this with many zeros are often used in scientific calculations, but entering the zeros one by one is a great deal of work and it's easy to make mistakes. In such cases, the numerical values are divided into mantissa and exponent portions, displayed and calculated.
<Example> What is the number of electrons flowing in a conductor when the electrical charge across a given cross-section is 0.32 coulombs.
(The charge on a single electron $=1.6 \times 10^{-19}$ coulombs).

$0.32 \div$
0.
1.6 Exp 19
$0.32 \div$

1. $5 \times 10^{19}$
$=$
$0.32 \div 1.6 \mathrm{E} 19=$ 2.

## 6. ANGULAR UNIT

Angular values are converted from DEG to RAD to GRAD with each push of the DRG key (2nd function of $\bullet$ ). This function is used when doing calculations related to trigonometric functions or coordinate geometry conversions.

## Degrees (DEG is shown at the top of the display)

A commonly used unit of measure for angles. The angular measure of a circle is expressed as $360^{\circ}$.

## Radians (RAD is shown at the top of the display)

Radians are different from degrees and express angles based on the circumference of a circle. $180^{\circ}$ is equivalent to $\pi$ radians. Therefore, the angular measure of a circle is $2 \pi$ radians.

## Grads (GRAD is shown at the top of the display)

Grads are a unit of angular measure used in Europe, particularly in France. An angle of 90 degrees is equivalent to 100 grads.

The relationships between the three types of angular units can be expressed as right:

$$
90^{\circ}(\text { DEG })=
$$ $\pi / 2(\mathrm{RAD})=$ $100($ GRAD $)=$


<Example> Check to confirm 90 degrees equalling $\pi / 2$ radians equalling 100 grads. ( $\pi=3.14159$...)

## Operation



Display
Angular unit indicator

$(\pi / 2)$


ANS $\operatorname{cora}$ D
100.

$$
A N S \rightarrow D E G
$$

90. 

## $\approx$ Functions and Key Operations $\approx$

## ON/OFF, Entry Correction Keys

## ON/C

 $\triangle$ OFF CA

Turns the calculator on or clears the data. It also clears the contents of the calculator display and voids any calculator command; however, statistics, as well as values stored in the memory, are not erased.

## OFF

Turns the calculator off.

CA Clears all internal values, including the last answer (ANS) and statistics. Values stored in M memory in normal mode are not erased.


These arrow keys are useful for Multi-Line playback, which lets you scroll through calculation steps one by one.


The ${ }^{\mathbb{N} S}$ key inserts the symbol/number at the cursor.


0 to 9 Numeric keys for entering data values.
$\bigcirc$
Decimal point key. Enters a decimal point.

Enters the minus symbol or sign change key.
Changes positive numbers to negative and negative numbers to positive.
$\pi$
Enters $\pi$ (3.14159...).
$\pi$ The constant $\pi$, used frequently in function calculations, is the ratio of the circumference of a circle to its diameter

Exp Pressing this key switches to scientific notation data entry.
<Example> Provided the earth is moving around the sun in a circular orbit, how many kilometers will it travel in a year?

* The average distance between the earth and the sun being $1.496 \times 10^{8} \mathrm{~km}$.

Circumference equals diameter $\times \pi$; therefore, $1.496 \times 10^{8} \times 2 \times \pi$

## Operation



## Display

$\square$

1. $496 \mathrm{E} 0_{8}^{\mathrm{of}} \times 2 \times \pi \rightarrow$ 939964522.

RANDOM Generates random numbers.
Random numbers are three-decimal-place values between 0.000 and 0.999 . Using this function enables the user to obtain unbiased sampling data derived from random values generated by the calculator.
<Example>


## [Random Dice]

To simulate a die-rolling, a random integer between 1 and 6 can be generated by


## [Random Coin]

To simulate a coin flip, 0 (heads) or 1 (tails) can be randomly generated by pressing 2ndf ranom 2 To generate the next random coin number, press $T_{\text {ENT }}$.

## [Random Integer]

 To generate the next random integer, press $\underset{E_{\text {ENT }}}{ }$.


MDF Function to round calculation results.
Even after setting the number of decimal places on the display, the calculator performs calculations using a larger number of decimal places than that which appears on the display.
By using this function, internal calculations will be performed using only the displayed value.
<Example> FIX mode TAB = 1 (normal calculation)
$5 \div 0.6$ (internally, $0.5555 \ldots$...)
$\times 9=5.0$

Rounded calculation (MDF)


APPLICATIONS:
| Frequently used in scientific and technical fields, as well as business, I I when performing chained calculations.

## Basic Arithmetic Keys, Parentheses <br> 



The four basic operators. Each is used in the same way as a standard calculator:
$\times$ $\div$

+ (addition), - (subtraction), x (multiplication), and $\div$ (division).

1
)

Finds the result in the same way as a standard calculator.

Used to specify calculations in which certain operations have precedence.
You can make addition and subtraction operations have precedence over multiplication and division by enclosing them in parentheses.

## Percent

\% For calculating percentages. Four methods of calculating percentages are presented as follows.

1) $\$ 125$ increased by $10 \% \ldots 137.5$
$125+102 \mathrm{ndF} \%$

$$
125+10 \%
$$

2) $\$ 125$ reduced by $20 \%$... 100

125-20\% 100.
3) $15 \%$ of $\$ 125 \ldots 18.75$
$125 \times 15$ 2ndF $\%$
$125 \times 15 \%$
19.75
4) When $\$ 125$ equals $5 \%$ of $X, X$ equals... 2500
125
$\div$
5 2ndF
$\stackrel{\%}{\leftrightarrows}$
$125 \div 5 \%$
2500. 

# Inverse, Square, Cube,  Cube Root, xth Root <br>  



Calculates the inverse of the value.
$\boldsymbol{x}^{2}$ Squares the value.
$x^{3}$ Cubes the value.
$\boldsymbol{y} \boldsymbol{x} \quad$ Calculates exponential values.

$\stackrel{\sqrt{\square}}{\square}$
Calculates the square root of the value.
$\sqrt[3]{ }$ Calculates the cube root of the value.
$x \sqrt{ }$
Calculates the $x^{\text {th }}$ root of the value.
<Example>


Operation
2
$\times$ 2 $\square$ 2 $\square$ 2
$=$
2
$y x$
4
$=$
$4 \longdiv { 2 \text { ndF } } \stackrel { x _ { v } - } { \leftrightarrows } 1 6 =$
$4 \times \sqrt{16}=$
2.

## 10 to the Power of x , Common Logarithm

Calculates the value of 10 raised to the $x^{\text {th }}$ power.
log Calculates the logarithm, the exponent of the power to which 10 must be raised to equal the given value.
<Example>

Operation

$\log 1000=$

Display

$$
10^{\wedge} 3=0000 .
$$

$\log 1000=$
3.

# e to the Power of x , Natural Logarithm 



## $e^{x}$ <br> Calculates powers based on the constant e (2.718281828).

In
Computes the value of the natural logarithm, the exponent of the power to which e must be raised to equal the given value.
<Example>

Operation


Display

$$
\begin{aligned}
& \mathrm{e}^{\wedge} 5= \\
& 148.4131591
\end{aligned}
$$

$\ln 10=$
2.302585093

## Factorials $\stackrel{n}{ }$

$n!\quad$ The product of a given positive integer $n$ multiplied by all the lesser positive integers from 1 to $n-1$ is indicated by $n$ ! and called the factorial of $n$.
<Example 1>

<Example 2> How many arrangements exist of cards of three colors: red, blue, and yellow?

$$
3!=3 \times 2 \times 1=6
$$

## Operation

Display


## I APPLICATIONS:

I Used in statistics and mathematics. In statistics, this function is used I in calculations involving combinations and permutations.

## Permutations, Combinations ner ner

$n \mathbf{P r} \quad$ This function finds the number of different possible orderings in selecting $r$ objects from a set of $n$ objects. For example, there are six different ways of ordering the letters $A B C$ in groups of three letters-ABC, $A C B$, $B A C, B C A, C A B$, and CBA.
The calculation equation is ${ }_{3} P_{3}=3 \times 2 \times 1=6$ (ways).

This function finds the number of ways of selecting $r$ objects from a set of $n$ objects. For example, from the three letters $A B C$, there are three ways we can extract groups of two different letters-AB, AC, and CB.
The calculation equation is ${ }_{3} \mathrm{C}_{2}$.
<Example>

Operation


Display


## APPLICATIONS:

\| Used in statistics (probability calculations) and in simulation hypotheses
I in fields such as medicine, pharmaceutics, and physics. Also, can be used
I to determine the chances of winning in lotteries.

## Time Calculation

Converts a sexagesimal value displayed in degrees, minutes, seconds to decimal notation. Also, converts a decimal value to sexagesimal notataion (degrees, minutes, seconds).

Dom's Inputs values in sexagesimal notation (degrees, minutes, seconds).
<Example> Convert $24^{\circ} 28^{\prime} 35^{\prime \prime}$ (24 degrees, 28 minutes, 35 seconds) to decimal notation. Then convert $24.476^{\circ}$ to sexagesimal notation.

Operation

24 Dow's 28 DOW'S 35

2ndF
$\leftrightarrow$ DEG
Convert to decimal notation


Display


Repeat last key operation to return to the previous display.

[^0]
## Fractional Calculations <br> $a b / c$

$a b / c \quad$ Inputs fractions and converts mutually between fractions and decimals.
d/c Converts between mixed numbers (fractions) and improper fractions.
<Example> Add $3 \frac{1}{2}$ and $\frac{5}{7}$, and convert to decimal notation.

## Operation


$a b / c$
Convert to decimal notation.
Press once to return to the fraction.

$3\left\ulcorner 1 г 2+5^{200} 57=14\right.$.
Display

$$
\begin{array}{r}
3 r 1 r 2+5\ulcorner 7= \\
4 r 3 r 14 .
\end{array}
$$

Convert to an improper fraction.
Press once to return to the mixed number (fraction).

$$
2 n d F \stackrel{d / c}{c} \quad \begin{array}{r}
3 r 1 г 2+5\ulcorner 7= \\
4 r 3 r 14 .
\end{array}
$$

## APPLICATIONS:

There is a wide variety of applications for this function because fractions are such a basic part of mathematics. This function is useful for calculations involving electrical circuit resistance.


STO Stores displayed values in memories A~F, X, Y, M.
RCL Recalls values stored in A~F, X, Y, M.
M+ Adds the displayed value to the value in the independent memory M .
$\xrightarrow{\text { M- }}$ Subtracts the displayed value from the value in the independent memory M.


Independent memory
<Example 1>
Operation
0 STO ${ }_{\text {(Enter } 0 \text { for } \mathrm{M} \text { ) }}$

| Display |  |  |
| :--- | :--- | :---: |
| $0 \Rightarrow \mathrm{M}$ |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| DE6 |  |  |


<Example 2>
Calculates $\$ \not \approx$ at the designated exchange rate.
\$1 = $¥ 110$
$¥ 26,510=\$$ ?
$\$ 2,750=¥ ?$

Operation
110 STO $Y$


2750


Display

$$
110 \Rightarrow Y \quad \text { Dea }
$$

110. 

## Last Answer Memory

## ANS

Recalls the last answer calculated by pressing $=$
<Example> Solve for $x$ first and then solve for $y$ using $x$.

$$
x=\sqrt{2}+3 \text { and } y=4 \div x
$$

## Operation



Display
$\begin{array}{rl}\sqrt{2}+3 & = \\ 4.4142 & 13562\end{array}$
$4 \div$ ANS $=$
0.905163678

## Formula Memories

${ }^{\text {F1 }} \sim{ }^{\text {F4 }}$ Fomulas can be stored in F1~F4.
<Example>
Calculates the volume of triangular pyramid by using a formula memory.


## Operation



$$
3 \Rightarrow Y
$$

$$
3 .
$$

3 STO $\quad \mathrm{Y}$


## Trigonometric Functions

Trigonometric functions determine the ratio of three sides of a right triangle. The combinations of the three sides are $\sin , \cos$, and tan. Their relations are:

sin Calculates the sine of an angle. $\sin \theta=\frac{\boldsymbol{b}}{\boldsymbol{a}}$
cos Calculates the cosine of an angle. $\quad \cos \theta=\frac{\boldsymbol{C}}{\mathbf{a}}$
$\tan$ Calculates the tangent of an angle. $\boldsymbol{\operatorname { t a n }} \theta=\frac{\boldsymbol{b}}{\boldsymbol{c}}$

## <Example 1>

The angle from a point 15 meters from a building to the highest floor of the building is $45^{\circ}$. How tall is the building?


## Operation

SETUP 0 (DRG)
0 (DEG)
<Angle setting "○" (DEG)>


I APPLICATIONS:
Trigonometric functions are useful in mathematics and various engineering calculations. They are often used in astronomical observations, civil engineering and in calculations involving electrical circuits, as well as in calculations for physics such as parabolic motion and wave motion.

## Trigonometric Functions sin $\cos \tan$

<Example 2>
Find the length of the side of the following triangle.


$$
\begin{aligned}
& a=20 \sin 30 \\
& b=20 \cos 30
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{2}{\tan 17} \\
& y=\frac{2}{\sin 17}
\end{aligned}
$$

Operation

SETUP 0 (DRG)
0 (DEG)
<Angle setting "॰" (DEG)>

## Trigonometric Functions $\sin \cos \tan$


$20 \leq \sin 30=$

$20 \cos 30=$
$20 \cos 30^{\circ \pi}=$
17.32050808
$2 a b / \tan 17=$
2 r.tan $17^{\circ i \pi}=$
5.541705237
$2 \operatorname{ab} / 6 \sin 17=$
2 rsin $17^{\text {ieq }}=$
6.84050724

## Arc Trigonometric Functions sins. oors

Arc trigonometric functions, the inverse of trigonometric functions, are used to determine an angle from ratios of a right triangle.
The combinations of the three sides are $\sin ^{-1}$, $\cos ^{-1}$, and tan ${ }^{-1}$.
Their relations are;

$\boldsymbol{s i n}^{-1} \quad$ (arc sine) Determines an angle based on the ratio

$$
\theta=\sin ^{-1} \frac{b}{a}
$$

$\boldsymbol{\operatorname { c o s }}^{-1}$ (arc cosine) Determines an angle based on the ratio $\quad \theta=\cos ^{-1} \frac{\boldsymbol{C}}{\mathbf{a}}$
c/a for two sides of a right triangle.
$\begin{aligned} & \boldsymbol{t a n}^{-1} \text { (arc tangent) Determines an angle based on the } \\ & \text { ratio b/c for two sides of a right triangle. }\end{aligned} \quad \theta=\boldsymbol{\operatorname { t a n }}^{-1} \frac{\boldsymbol{b}}{\boldsymbol{c}}$
<Example>
At what angle should an airplane climb in order to climb 80 meters in 100 meters?


Display
$\tan ^{-1}(80 \stackrel{\mathrm{DEG}}{\div}-100)$
38.65980825

## Hyperbolic Functions thap act chp

hyp The hyperbolic function is defined by using natural exponents in trigonometric functions.
arc hyp Arc hyperbolic functions are defined by using natural logarithms in trigonometric functions.


## Coordinate Conversion

$\rightarrow r \theta$
Converts rectangular coordinates to polar coordinates $(x, y \rightarrow r, \theta)$
$\rightarrow \boldsymbol{x y}$ Converts polar coordinates to rectangular coordinates $(r, \theta \rightarrow x, y)$
5 Splits data used for dual-variable data input.
$\rightleftarrows$ Displays $r, \theta$ and $x, y .(x \rightleftarrows y$ or $r \rightleftarrows \theta)$

<Example> Determine the polar coordinates $(\mathrm{r}, \theta)$ when the rectangular coordinates of Point P are $(x=7, y=3)$.
[DEG mode]


[^1]
# Binary, Pental, Octal, Decimal, and Hexadecimal Operations ( N -Base) 



This calculator can perform conversions between numbers expressed in binary, pental, octal, decimal, and hexadecimal systems. It can also perform the four basic arithmetic operations, calculations with parentheses and memory calculations using binary, pental, octal, decimal, and hexadecimal numbers. In addition, the calculator can carry out the logical operations AND, OR, NOT, NEG, XOR, and XNOR on binary, pental, octal, and hexadecimal numbers.
$\rightarrow$ BIN Converts to the binary system. $\rightarrow$ HEX Converts to the hexadecimal system. "b" appears.
$\rightarrow$ PEN Converts to the pental system. "P" appears.
$\rightarrow$ OCT Converts to the octal system.
" H " appears.
$\rightarrow$ DEC Converts to the decimal system.
$\longrightarrow$ "b", "P", "o", and "H" disappear from the display.
"o" appears.
Conversion is performed on the displayed value when these keys are pressed.

<Example 2> 1011 AND $101=(\mathrm{BIN}) \rightarrow$ DEC

## Operation



Display

<Example>


The semicircle above is given by the equation

$$
y=\sqrt{1-x^{2}}
$$

Find the slope of the tangent $A B$ at point $B(-1 / 2, \sqrt{3} / 2)$ on the semicircle.


## Operation

## Display




The fan shaped curve at left is given by the equation

$$
y=\sqrt{1-x^{2}}
$$

Find the area of the fan shape with radius 1 and central angle $90^{\circ}$.

$$
\int_{0}^{1} \sqrt{1-x^{2}} d x
$$



## Simulation Calculation

## <Example>

Solve for the length of hypotenuse C in a right triangle with a given length on each of the other two sides $A$ and $B$.

The formula is;

$$
C=\sqrt{A^{2}+B^{2}}
$$

$A=2, B=3$, then $C=$ ?
$A=2, B=5$, then $C=$ ?

## Operation



Display


Enter the formula


The statistics function is excellent for analyzing qualities of an event. Though primarily used for engineering and mathematics, the function is also applied to nearly all other fields including economics and medicine.
$\Psi_{(x, y)}$ Splits data for input.
$\underset{\text { DATA }}{ }$ Enters data for statistical calculations.
$\square$ Clears data input.
CD

## DATA INPUT FOR 1-VARIABLE STATISTICS

<Example 1> Here is a table of examination results. Input this data for analysis.

Data table 1

| No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Score | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| No. of pupils | 2 | 4 | 5 | 7 | 12 | 10 | 8 | 2 |

## Operation



Select single-variable statistics mode


$$
\text { Stat } 0
$$

DATA SET $=$
1.

1.

Display


## "ANS" KEYS FOR 1-VARIABLE STATISTICS

## $\bar{x}$

Calculates the average value of the data (sample data $x$ ).

Calculates the standard deviation for the data (sample data $x$ ).

Calculates the standard deviation of a data population (sample data $x$ ).

## n

Displays the number of input data (sample data $x$ ).

Calculates the sum of the data (sample data $x$ ).
$\Sigma x^{2}$ Calculates the sum of the data (sample data $x$ ) raised to the second power.

## NOTE:

1. Sample data refers to data selected randomly from the population.
2. Standard deviation of samples is determined by the sample data shift from an average value.
3. Standard deviation for the population is standard deviation when the sample data is deemed a population (full data).

Let's check the results based on the previous data.
RCL $\overline{\boldsymbol{x}} \quad 69$ (average value)
RCL $\quad \boldsymbol{S X} \quad 17.75686128$ (standard deviation)
RCL $\quad \sigma x \quad 17.57839583$ (standard deviation of the population)
$\mathrm{RCL} \square 50$ (total count of data)
RCL $\sum \boldsymbol{X} 3450$ (total)

## DATA CORRECTION

Correction prior to pressing $\underset{\text { DAAA }}{ }$ immediately after a data entry: Delete incorrect data with owe , then enter the correct data.
Correction after pressing Data :
Use $\triangle \nabla$ to display the data previously entered.
Press $\nabla$ to display data items in ascending (oldest first) order. To reverse the display order to descending (latest first), press the $\Delta$ key. Each item is displayed with 'X:', 'Y:', or 'F:' ( $n$ is the sequential number of the data set).
Display the data item to modify, input the correct value, then press oand . Using $\underset{[x, y, y}{ }$, you can correct the values of the data set all at once.
-When $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ appears, more data items can be browsed by pressing
$\Delta$ or $\nabla$.

- To delete a data set, display an item of the data set to delete, then press 2naff co. The data set will be deleted.
- To add a new data set, press owe and input the values, then press ourar .


## <Example 2>

## Data table 2



Operation
MODE


Select single-variable statistics mode
$30 \underset{\text { DATA }}{\leftrightarrows}$

## Display

## Stat 0

0. 

DATA SETT=
1.

## DATA SETT= 2.

## Operation


$45 \underset{(x, y)}{\leftrightarrows} 3 \underset{\text { DATA }}{\leftrightarrows}$


[^2]
## DATA INPUT FOR 2-VARIABLE STATISTICS

<Example 3> The table below summarizes the dates in April when cherry blossoms bloom, and the average temperature for March in that same area. Determine basic statistical quantities for data X and data Y based on the data table.

## Data table 3

|  | Year | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Average temperature | 6.2 | 7.0 | 6.8 | 8.7 | 7.9 | 6.5 | 6.1 | 8.2 |
| $\mathbf{y}$ | Date blossoms bloom | 13 | 9 | 11 | 5 | 7 | 12 | 15 | 7 |
|  |  |  |  |  |  |  |  |  |  |

Operation
MODE


Select dual-variable statistics mode and linear regression calculation in sub-mode.
6.2

$13 \stackrel{\square}{\text { DATA }}$
$6.1 \underset{(x, y)}{\leftrightarrows} 15 \stackrel{\text { DATA }}{\leftrightarrows}$
DATA SE ${ }^{\text {品 }}=$
1.
DATA SETT=
STAT
$8.2 \widetilde{(x, y)} 7 \underset{\text { DATA }}{ }$


## Display

## Stat 1 <br> Stat 1

0. 

STAT

## "ANS" KEYS FOR 2-VARIABLE STATISTICS

In addition to the 1-variable statistic keys, the following keys have been added for calculating 2 -variable statistics.
$\Sigma x y$ Calculates the sum of the product for sample data $x$ and sample data $y$.
$\Sigma y$
$\Sigma y^{2}$

Calculates the sum of the data (sample data $y$ ).
Calculates the sum of the data (sample data $y$ ) raised to the second power.
Calculates the average value of the data (sample data $y$ ).
Calculates the standard deviation for the data (sample data $y$ ).
Calculates the standard deviation of a data population (sample data $y$ ).
NOTE:
The codes for basic statistical quantities of sample data $x$ and their meanings are the same as those for single-variable statistical calculations.

Let' s check the results based on the previous data.

7.175
(Average for data $x$ )


 9.875 (Average for data $y$ )

3.440826313 (Standard deviation for data $y$ )

RCL $\quad$ 3.218598297 (Standard deviation of the population for data $y$ )


8
(Total count of data)

418.48
(Sum of data $x$ raised to the second power)
RCL $\sum x y$ 544.1
(Sum of the product of data $x$ and data $y$ )


79
(Sum of data $y$ )
RCL $\sum^{\Sigma y^{2}} 863$ (Sum of data $y$ raised to the second power)

## <Example>

When ethanol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is completely combusted, carbon dioxide $\mathrm{CO}_{2}$ and water $\mathrm{H}_{2} \mathrm{O}$ are created.
The chemical reaction formula of this reaction is expressed as follows:

$$
x \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow y \mathrm{CO}_{2}+z \mathrm{H}_{2} \mathrm{O}
$$

Find the values of $x, y$, and $z$ to complete the chemical reaction formula.
The numbers of $\mathrm{C}, \mathrm{H}$, and O before and after the reaction are equal, hence Number of C: $2 x=y$
Number of $\mathrm{H}: 5 x+x=2 z$
Number of O: $x+6=2 y+z$
As such, the following simultaneous equations are obtained:

$$
\begin{aligned}
2 x-y+ & =0 \\
6 x-2 z & =0 \\
x-2 y-z & =-6
\end{aligned}
$$

Solving these gives

$$
x=1, y=2, z=3
$$

and the chemical reaction formula is
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

## Operation

## Display

Set the mode to Equation
MODE 2 (EQN)
<Equation mode>

## 1 (3-VLE)

<Simultaneous linear equations
 in three unknowns>

Enter the coefficients

$$
\begin{aligned}
& a 1=2, b 1=-1, c 1=0, d 1=0 \\
& a 2=6, b 2=0, c 2=-2, d 2=0 \\
& a 3=1, b 3=-2, c 3=-1, d 3=-6
\end{aligned}
$$

2


2


0


2


1


$$
\begin{aligned}
& \text { ( } x=1) \\
& \overbrace{E N T}(y=2) \\
& (z=3)
\end{aligned}
$$

## <Example>

An AC sine wave voltage of $100 \mathrm{~V}, 50 \mathrm{~Hz}$ is applied to a circuit consisting of a resistor $(R=250 \Omega)$ and capacitor $\left(C=20 \times 10^{-6} \mathrm{~F}\right)$ connected in parallel.
Find the impedance of this circuit.
Circuit impedance $=$ Value of polar coordinate $r$
Let $R=250, C=20 \times 10^{-6}$, and $f=50$.
If the complex number $Z=1 \div((1 \div R)+2 \pi f C i)$,
find the value of the complex number $Z$ and the values of $r$.

## Operation

Display

## MODE 3 (CPLX)

Complex mode


SETVP 0 (DRG)
1 (RAD) <Angle setting RAD>


In a certain year (year 0 ), the share of manufacturer $A$ is $10 \%$ and the share of manufacturer B is $90 \%$. Manufacturer A then releases a new product, and each following year it maintains $90 \%$ of the share $a_{k}$ it had the previous year (year k), and usurps $20 \%$ of the share $b_{k}$ of manufacturer B.
Find the transition matrix for this process and the shares of manufacturers $A$ and $B$ after 2 years.


## Answer

The share of each company after one year is expressed as follows using $\mathrm{a}_{0}$ and $\mathrm{b}_{0}$.

$$
\begin{aligned}
& a_{1}=0.9 a_{0}+0.2 b_{0} \\
& b_{1}=(1-0.9) a_{0}+(1-0.2) b_{0}
\end{aligned}
$$

Thus, $a_{1}$ and $b_{1}$ are

$$
\begin{aligned}
& \mathrm{a}_{1}=0.9 \mathrm{a}_{0}+0.2 \mathrm{~b}_{0} \\
& \mathrm{~b}_{1}=0.1 \mathrm{a}_{0}+0.8 \mathrm{~b}_{0}
\end{aligned}
$$

The transition matrix is

$$
A=\left[\begin{array}{ll}
0.9 & 0.2 \\
0.1 & 0.8
\end{array}\right]
$$

In the same way, after two years

$$
\begin{aligned}
& a_{2}=0.9 a_{1}+0.2 b_{1} \\
& b_{2}=0.1 a_{1}+0.8 b_{1}
\end{aligned}
$$

Expressing $a_{2}$ and $b_{2}$ using $a_{0}$ and $b_{0}$ gives

$$
\begin{aligned}
\mathrm{a}_{2} & =0.9\left(0.9 \mathrm{a}_{0}+0.2 \mathrm{~b}_{0}\right)+0.2\left(0.1 \mathrm{a}_{0}+0.8 \mathrm{~b}_{0}\right) \\
& =(0.9 \times 0.9+0.2 \times 0.1) \mathrm{a}_{0}+(0.9 \times 0.2+0.2 \times 0.8) \mathrm{b}_{0} \\
& =0.83 \mathrm{a}_{0}+0.34 \mathrm{~b}_{0} \\
\mathrm{~b}_{2} & =0.1\left(0.9 \mathrm{a}_{0}+0.2 \mathrm{~b}_{0}\right)+0.8\left(0.1 \mathrm{a}_{0}+0.8 \mathrm{~b}_{0}\right) \\
& =(0.1 \times 0.9+0.8 \times 0.1) \mathrm{a}_{0}+(0.1 \times 0.2+0.8 \times 0.8) \mathrm{b}_{0} \\
& =0.17 \mathrm{a}_{0}+0.66 \mathrm{~b}_{0}
\end{aligned}
$$

In summary,

$$
\mathrm{a}_{2}=0.83 \mathrm{a}_{0}+0.34 \mathrm{~b}_{0}
$$

$$
\mathrm{b}_{2}=0.17 \mathrm{a}_{0}+0.66 \mathrm{~b}_{0}
$$

$A^{2}=\left[\begin{array}{ll}0.83 & 0.34 \\ 0.17 & 0.66\end{array}\right]:$ This is equal to matA ${ }^{2}$.

## Operation

Set the mode to Matrix

## MODE 4 (MAT) Matrix mode

| 0. |
| :---: |

Enter matA
Display

 <2 x 2 Matrix>
$0.9 \underset{\text { DATA }}{\leftrightarrows} 0.2 \underset{\text { DATA }}{\leftrightarrows}$
$0.1 \underset{\text { DATA }}{\leftrightarrows} 0.8 \underset{\text { DATA }}{\leftrightarrows}$ <Enter numeric values>

$$
- \text { MAT2, } 2={ }^{\circ} \quad 0.8
$$

## ON/C MATH 2 (STO) 0

<0: Save to matA>

Calculate

<Calculate the square>

Press $\nabla$ to confirm the result

$$
\left[\begin{array}{ll}
0.83 & 0.34 \\
0.17 & 0.66
\end{array}\right]
$$



Find the shares of manufacturers $A$ and $B$ after 2 years.


## SHARP

## SHARP CORPORATION


[^0]:    
    I Used in calculations of angles and angular velocity in physics, and latitude and longitude in geography.

[^1]:    『 APPLICATIONS:
    Coordinate conversion is often used in mathematics and engineering, especially for impedance calculations in electronics and electrical engineering.

[^2]:     fields, including engineering, business, and economics. They are most often applied to analysis in atmospheric observations and physics experiments, as well as for quality control in factories.

